Preferred Language
Articles
/
ijs-2004
Incorporation of Palm Fiber to Enhance the Mechanical Properties of Epoxy

In the recent years, the work in composite industry needed new ecofriendly resources to improve the original properties of current materials. Many researches attempted to find alternative additives to be used with the current systems which provide a new material that is environmentally friendly and has better performance than the synthetic counterparts. This paper presents the study of mechanical characteristics, including bending, impact, tensile and hardness tests, of date palm fiber (DPF)/ epoxy composite. The composite plate was constructed by hand-layup technique. The filler content values (wt %) were 5%, 10%, 15% and 20%. Young's modulus, impact strength and hardness were shown to be increased with increasing fiber content. Tensile strength was increased only  using 5% and 10%, whereas it was decreased using fiber content.

Scopus Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Sun Jun 03 2012
Journal Name
Baghdad Science Journal
Mechanical properties of carrot fiber - epoxy composite

Interest has largely centered on the use of plant fibers to reinforce plastics, because these fibers are abundant and cheap. Carrot fibers (Curran) have been extracted from carrot, left over from carrot juice manufacture. The fibers of two sizes fine (50<µm) and coarse (100-150 µm) have been mixed with epoxy in four levels of loading (10, 20, 30, 40 wt %) respectively. Impact test, shore d hardness test and three point bending test of epoxy and carrot fiber-epoxy composites samples have been determined. The impact strength values of samples prepared with fine and coarse fibers increased as compared with pure epoxy sample. Hardness values increased, and the Young’s modulus values decreased with fiber content of both sizes.

Crossref
View Publication Preview PDF
Publication Date
Wed Jun 01 2022
Journal Name
Iraqi Journal Of Physics
Evaluation of Mechanical Properties for Epoxy reinforced with palm oil /Zinc oxide composites

In this research, the effect of reinforcing epoxy resin composites with a filler derived from chopped agriculture waste from oil palm (OP). Epoxy/OP composites were formed by dispersing (1, 3, 5, and 10 wt%) OP filler using a high-speed mechanical stirrer utilizing a hand lay-up method. The effect of adding zinc oxide (ZnO) nanoparticles, with an average size of 10-30 nm, with different wt% (1,2,3, and 5wt%) to the epoxy/oil palm composite,  on the behavior of an epoxy/oil palm composite was studied with different ratios (1,2,3, and 5wt%) and an average size of  10-30 nm.  Fourier Transform Infrared (FTIR) spectrometry and mechanical properties (tensile, impact, hardness, and wear rate) were used to examine the composites. The FTIR

... Show More
Crossref (4)
Crossref
View Publication Preview PDF
Publication Date
Tue Feb 12 2019
Journal Name
Iraqi Journal Of Physics
Effect of industrial powder on mechanical properties of glass fiber reinforced epoxy composite

In the present study, composites were prepared by Hand lay-up molding and investigated. The composites constituents were epoxy resin as the matrix, 6% volume fractions of Glass Fibers (G.F) as reinforcement and 3%, 6% of industrial powder (Calcium Carbonate CaCO3, Potassium Carbonate K2CO3 and Sodium Carbonate Na2CO3) as filler. Density, water absorption, hardness test, flexural strength, shear stress measurements and tests were conducted to reveal their values for each type of composite material. The results showed that the non – reinforced epoxy have lower properties than composites material. Measured density results had show an incremental increase with volume fraction increase

... Show More
Crossref (2)
Crossref
View Publication Preview PDF
Publication Date
Thu Jun 07 2018
Journal Name
Applied Physics A
Crossref (45)
Crossref
View Publication
Publication Date
Sun Dec 17 2017
Journal Name
Al-khwarizmi Engineering Journal
Effect of Nano Powder on Mechanical and Physical Properties of Glass Fiber Reinforced Epoxy Composite

Fiber reinforced polymer composite is an important material for structural application. The diversified application of FRP composite has taken center of attraction for interdisciplinary research. However, improvements on mechanical properties of this class of materials are still under research for different applications. In this paper we have modified the epoxy matrix by Al2O3, SiO2 and TiO2 nano particles in glass fiber/epoxy composite to improve the mechanical and physical properties. The composites are fabricated by hand lay-up method. It is observed that mechanical properties like flexural strength, hardness are more in case of SiO2 modified epoxy composite compare to other nano

... Show More
View Publication Preview PDF
Publication Date
Fri Dec 25 2015
Journal Name
Iraqi Dental Journal
Crossref (1)
Crossref
View Publication
Publication Date
Sun Feb 10 2019
Journal Name
Iraqi Journal Of Physics
Study of the mechanical properties of Iron-Epoxy composite materials

Iron-Epoxy composite samples were prepared by added
different weight percentages (0, 5, 10, 15, and 20 wt %) from Iron
particles in the range of (30-40μm) as a particle size. The contents
were mixed carefully, and placed a circular dies with a diameter of
2.5 cm. Different mechanical tests (Shore D Hardness, Tensile
strength, and Impact strength ) were carried out for all samples. The
samples were immersed in water for ten weeks, and after two weeks
the samples were take-out and drying to conducting all mechanical
tests were repeated for all samples. The hardness values increased
when the Iron particle concentration increased while the Impact
strength is not affected by the increasing of Iron particles
c

... Show More
Crossref
View Publication Preview PDF
Publication Date
Fri Jan 20 2023
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Improving the Mechanical Properties of Epoxy by Adding Sub-micron Cantaloupe Peel Fibers

The use of bio-fruit waste has more attention in recent years because of the low cost of bio-fibers and the protection of the environment. In this study, the epoxy was reinforced with fruit residues (cantaloupe peel powder) in proportions (1%, 2%, 3%, 4%, 5%, 7.5%, and 10% by weight) as results of mechanical tests such as impact, hardness, flexural and compression.

Adding sub microns particle size cantaloupe peels particles with a weight ratio of 7.5% improves the epoxy mechanical properties, like impact strength, hardness, flexural strength, and compression strength by 59.43%, 5.8%, 45.7%, and 118.2%, respectively.

Using X-ray diffraction, the crystallite size ( D) of cantaloupe peel the powder was about (3 nm).

In

... Show More
Crossref
View Publication Preview PDF
Publication Date
Wed Mar 10 2021
Journal Name
Baghdad Science Journal
Mechanical properties of epoxy-polyurethane polymer blends

Configured binary polymer blends of epoxy and Polyurethane was chosen varying proportions of these materials led to the production of homogeneous mixtures of Althermust Althermust and descent was poured polyurethane models required in the form of 4 mm thick plates

View Publication Preview PDF
Publication Date
Wed Mar 01 2023
Journal Name
Al-khwarizmi Engineering Journal
Mechanical PropertiesInvestigation of Unidirectional Woven Carbon Fiber Reinforced Epoxy Matrix Composite

In this study, the mechanical properties of an epoxy and unidirectional woven carbon with fiberglass composite were experimentally investigated. When preparing the composite samples, American Society for Testing and Materials (ASTM)standard was used. Tensile, impact and flexural test were conducted to investigate the mechanical properties of the new produced epoxy Unidirectional Woven Carbon and Epoxy Fiberglass composites. The outcome showed that the strength of the produced samples increased with the increase in the number of unidirectional woven carbon layers added. Two methods were utilized: (1) woven carbon composite with glass fiber (2) woven carbon composite). The two methods of composite were compared with each other.  The resul

... Show More
Crossref
View Publication Preview PDF