In this paper, we introduce the concepts of higher reverse left (resp.right) centralizer, Jordan higher reverse left (resp. right) centralizer, and Jordan triple higher reverse left (resp. right) centralizer of G-rings. We prove that every Jordan higher reverse left (resp. right) centralizer of a 2-torsion free prime G-ring M is a higher reverse left (resp. right) centralizer of M.
Our active aim in this paper is to prove the following Let Ŕ be a ring having an
idempotent element e(e 0,e 1) . Suppose that R is a subring of Ŕ which
satisfies:
(i) eR R and Re R .
(ii) xR 0 implies x 0 .
(iii ) eRx 0 implies x 0( and hence Rx 0 implies x 0) .
(iv) exeR(1 e) 0 implies exe 0 .
If D is a derivable map of R satisfying D(R ) R ;i, j 1,2. ij ij Then D is
additive. This extend Daif's result to the case R need not contain any non-zero
idempotent element.
This paper presents the design and analysis of composite right left hand (CRLH) electromagnetic bandgap (EBG) structure. The proposed unit cell is consistent of a dielectric substrate with dimensions of 5×5×1 mm 3 made of FR4-Epoxy with εr = 4.4 underneath of a conductive patch with dimensions of 4.4×4.4mm 2 . The unit cell is structured to perform a negative permittivity (ε) and negative permeability (µ) in different bands. The proposed unit cell is developed to 5G systems in the sub-6GHz bands. In this work, a complete analysis of the unit cell in terms of Sparameters, constitutive parameters and refraction index are evaluated using HFSS simulation package based on Finite Element Method (FEM).
In this article, the additivity of higher multiplicative mappings, i.e., Jordan mappings, on generalized matrix algebras are studied. Also, the definition of Jordan higher triple product homomorphism is introduced and its additivity on generalized matrix algebras is studied.
In this paper, we investigate prime near – rings with two sided α-n-derivations
satisfying certain differential identities. Consequently, some well-known results
have been generalized. Moreover, an example proving the necessity of the primness
hypothesis is given.
Let R be a 2-torision free prime ring and ?, ?? Aut(R). Furthermore, G: R×R?R is a symmetric generalized (?, ?)-Biderivation associated with a nonzero (?, ?)-Biderivation D. In this paper some certain identities are presented satisfying by the traces of G and D on an ideal of R which forces R to be commutative
This work generalizes Park and Jung's results by introducing the concept of generalized permuting 3-derivation on Lie ideal.
The main purpose of this paper is to define generalized Γ-n-derivation, study and investigate some results of generalized Γ-n-derivation on prime Γ-near-ring G and
In this paper, we proved that if R is a prime ring, U be a nonzero Lie ideal of R , d be a nonzero (?,?)-derivation of R. Then if Ua?Z(R) (or aU?Z(R)) for a?R, then either or U is commutative Also, we assumed that Uis a ring to prove that: (i) If Ua?Z(R) (or aU?Z(R)) for a?R, then either a=0 or U is commutative. (ii) If ad(U)=0 (or d(U)a=0) for a?R, then either a=0 or U is commutative. (iii) If d is a homomorphism on U such that ad(U) ?Z(R)(or d(U)a?Z(R), then a=0 or U is commutative.
Let R be an associative ring. The essential purpose of the present paper is to introduce the concept of generalized commuting mapping of R. Let U be a non-empty subset of R, a mapping : R R is called a generalized commuting mapping on U if there exist a mapping :R R such that =0, holds for all U. Some results concerning the new concept are presented.
In this paper we generalize some of the results due to Bell and Mason on a near-ring N admitting a derivation D , and we will show that the body of evidence on prime near-rings with derivations have the behavior of the ring. Our purpose in this work is to explore further this ring like behavior. Also, we show that under appropriate additional hypothesis a near-ring must be a commutative ring.