Preferred Language
Articles
/
ijs-1713
A Prey-Predator Model with Michael Mentence Type of Predator Harvesting and Infectious Disease in Prey

A prey-predator model with Michael Mentence type of predator harvesting and infectious disease in prey is studied. The existence, uniqueness and boundedness of the solution of the model are investigated. The dynamical behavior of the system is studied locally as well as globally. The persistence conditions of the system are established. Local bifurcation near each of the equilibrium points is investigated. Finally, numerical simulations are given to show our obtained analytical results.

Scopus Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Wed Apr 20 2011
Journal Name
Journal Of Al-qadisiyah For Computer Science And Mathematics
Chaos in a harvested prey-predator model with infectious disease in the prey

A harvested prey-predator model with infectious disease in preyis investigated. It is assumed that the predator feeds on the infected prey only according to Holling type-II functional response. The existence, uniqueness and boundedness of the solution of the model are investigated. The local stability analysis of the harvested prey-predator model is carried out. The necessary and sufficient conditions for the persistence of the model are also obtained. Finally, the global dynamics of this model is investigated analytically as well as numerically. It is observed that, the model have different types of dynamical behaviors including chaos.

View Publication Preview PDF
Publication Date
Thu Dec 30 2021
Journal Name
Iraqi Journal Of Science
The The Dynamics of a Prey-Predator Model with Infectious Disease in Prey: Role of Media Coverage

In this paper, an eco-epidemiological model with media coverage effect is proposed and studied. A prey-predator model with modified Leslie-Gower and functional response is studied. An  -type of disease in prey is considered.  The existence, uniqueness and boundedness of the solution of the model are discussed. The local and global stability of this system are carried out. The conditions for the persistence of all species are established. The local bifurcation in the model is studied. Finally, numerical simulations are conducted to illustrate the analytical results.

Scopus (5)
Crossref (2)
Scopus Crossref
View Publication Preview PDF
Publication Date
Wed Jun 03 2020
Journal Name
Journal Of Applied Mathematics
Order and Chaos in a Prey-Predator Model Incorporating Refuge, Disease, and Harvesting

In this paper, a mathematical model consisting of a prey-predator system incorporating infectious disease in the prey has been proposed and analyzed. It is assumed that the predator preys upon the nonrefugees prey only according to the modified Holling type-II functional response. There is a harvesting process from the predator. The existence and uniqueness of the solution in addition to their bounded are discussed. The stability analysis of the model around all possible equilibrium points is investigated. The persistence conditions of the system are established. Local bifurcation analysis in view of the Sotomayor theorem is carried out. Numerical simulation has been applied to investigate the global dynamics and specify the effect

... Show More
Scopus (6)
Crossref (2)
Scopus Clarivate Crossref
View Publication Preview PDF
Publication Date
Sun Oct 30 2022
Journal Name
Iraqi Journal Of Science
Stability Analysis of a Prey-Predator Model with Prey Refuge and Fear of Adult Predator

     This paper is concerned with a Holling-II stage-structured predator-prey system in which predators are divided into an immature and mature predators. The aim is to explore the impact of the prey's fear caused by the dread of mature predators in a prey-predator model including intraspecific competitions and prey shelters. The theoretical study includes the local and global stability analysis for the three equilibrium points of the system and shows the prey's fear may lead to improving the stability at the positive equilibrium point. A numerical analysis is given to ensure the accuracy of the theoretical outcomes and to testify the conditions of stability of the system near the non-trivial equilibrium points.

Scopus (6)
Crossref (1)
Scopus Crossref
View Publication Preview PDF
Publication Date
Fri Jul 01 2022
Journal Name
Iraqi Journal Of Science
The Effect of Disease and Harvesting on The Dynamics of Prey-Predator System

In this paper an eco-epidemiological system has been proposed and studied analytically as well as numerically. The boundedness, existence and uniqueness of the solution are discussed. The local and global stability of all possible equilibrium point are investigated. The global dynamics is studied numerically. It is obtained that system has rich in dynamics including Hopf bifurcation.

View Publication Preview PDF
Publication Date
Tue Feb 27 2024
Journal Name
Mathematical Modelling Of Engineering Problems
Scopus Crossref
View Publication
Publication Date
Mon Feb 01 2021
Journal Name
Journal Of Physics: Conference Series
The Fear Effect on a Food Chain Prey-Predator Model Incorporating a Prey Refuge and Harvesting
Abstract<p>In this paper, we investigate the impact of fear on a food chain mathematical model with prey refuge and harvesting. The prey species reproduces by to the law of logistic growth. The model is adapted from version of the Holling type-II prey-first predator and Lotka-Volterra for first predator-second predator model. The conditions, have been examined that assurance the existence of equilibrium points. Uniqueness and boundedness of the solution of the system have been achieve. The local and global dynamical behaviors are discussed and analyzed. In the end, numerical simulations are confirmed the theoretical results that obtained and to display the effectiveness of varying each parameter</p> ... Show More
Scopus (10)
Crossref (7)
Scopus Crossref
View Publication
Publication Date
Tue Mar 14 2023
Journal Name
Iraqi Journal Of Science
On the Dynamics of Prey-Predator Model Involving Treatment and Infections Disease in Prey Population

In this paper, a mathematical model consisting of the prey- predator model with treatment and disease infection in prey population is proposed and analyzed. The existence, uniqueness and boundedness of the solution are discussed. The stability analyses of all possible equilibrium points are studied. Numerical simulation is carried out to investigate the global dynamical behavior of the system.

View Publication Preview PDF
Publication Date
Tue Jan 30 2024
Journal Name
Iraqi Journal Of Science
Modeling and Analysis of A Prey-Predator System Incorporating Fear, Predator-Dependent Refuge, with Cannibalism In Prey

    The relationship between prey and predator populations is hypothesized and examined using a mathematical model. Predation fear, cannibalism among the prey population, and a refuge reliant on predators are predicted to occur. This study set out to look at the long-term behavior of the proposed model and the effects of its key elements. The solution properties of the model were investigated. All potential equilibrium points' existence and stability were looked at. The system's persistence requirements were established. What circumstances could lead to local bifurcation near equilibrium points was uncovered. Suitable Lyapunov functions are used to study the system's overall dynamics. Numerical simulations were conducted to verify the

... Show More
Scopus Crossref
View Publication Preview PDF
Publication Date
Tue Jan 10 2012
Journal Name
Iraqi Journal Of Science
THE IMPACT OF DISEASE AND HARVESTING ON THE DYNAMICAL BEHAVIOR OF PREY PREDATOR MODEL

In this paper, a harvested prey-predator model involving infectious disease in prey is considered. The existence, uniqueness and boundedness of the solution are discussed. The stability analysis of all possible equilibrium points are carried out. The persistence conditions of the system are established. The behavior of the system is simulated and bifurcation diagrams are obtained for different parameters. The results show that the existence of disease and harvesting can give rise to multiple attractors, including chaos, with variations in critical parameters.

View Publication Preview PDF