Preferred Language
Articles
/
ijs-1689
Effects of MWCNTs on the Tensile Properties and Thermal Conductivity of BaTiO3 /Epoxy Nanocomposites
...Show More Authors

This research studied the effects of modified BaTiO3 (BT) nanoparticles with coupling agent γ-APS (0.5wt. %) on the tensile and thermal conductivity of epoxy nanocomposites with respect to content (0.25, 0.5, 0.75, 1, 3 and 5wt. %). Multiwall carbon nanotubes (MWCNTs) at different concentration (0.2, 0.4, 0.8 and 1 wt. %) were added to the BaTiO3/epoxy nanocomposites. The influence of MWCNTs on the tensile properties and thermal conductivity was investigated. The tensile strength and Young’s modulus of BaTiO3/epoxy nanocomposites film were increased at up to 3 wt. % of added BT, but  adding BT at more than 3 wt.% decreased the strength of epoxy. The tensile strength was increased with increasing MWCNTs content from 32 MPa for pure epoxy to the value 56.8 MPa for 1wt. % of MWCNTs content. The thermal conductivity of BaTiO3/epoxy nanocomposites improved with increase of BT content. At 3wt. % and 5wt. % of BaTiO3 the thermal conductivity of nanocomposites decreased. The increase of MWCNTs concentration from 0.2 wt. % to 1 wt. % resulted in a thermal conductivity enhancement.

Scopus Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Sat Jan 01 2011
Journal Name
Iraqi Journal Of Physics
A.C Conductivity and Dielectric Properties of Epoxy - TiO2 Nanocomposites
...Show More Authors

In this paper, A.C conductivity of micro and nano grain size- TiO2 filled epoxy composites is measured. The dielectric material used is epoxy resin, while micro and nano-sized titanium dioxide (TiO2) of grain size (1.5μm, and 50nm) was used as filler at low filler concentrations by weight (3%, and 5%). Additionally the effect of annealing temperature range (293-373)º K and at a frequency range of 102-106 Hz on the A.C conductivity of the various specimens was studied.
The result of real permittivity for micro and nanocomposite show that the real permittivity increases with decreasing frequency at range of 102-106Hz. The micron-filled material has a higher real relative permittivity than the nano-filled this is true at all the temper

... Show More
View Publication Preview PDF
Publication Date
Sun Jan 30 2022
Journal Name
Iraqi Journal Of Science
Influence of Heat Treatment on Wear and Hardness Properties of MWCNTs Reinforced Epoxy nanocomposites
...Show More Authors

Nanocomposite of carbon nanotube add to epoxy resin material of weight fraction ( 0.25, 0.5, 0.75 1.0, 1.25, 1.5, 1.75 , 2 & 2.5 wt. % ) were fabricated by dispersing within an epoxy resin using a Ultrasound machine followed by mechanical stirring. The samples were heat treated at temperature ( 80 °C for 3 hrs) The mechanical properties of the composites were investigated. Wear and hardness properties measurements indicated higher wear rate and hardness with increasing concentration of MWCNTs . The MWCNTs significantly improved the wear resistance and hardness when compare than the pure epoxy. These note show too after heat treatment of composite with ( 80 oC for 3 hrs ).

View Publication Preview PDF
Publication Date
Wed Mar 08 2017
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Electrical Insulation Breakdown Strength and Thermal Conductivity of Different Blended Nanocomposites of New Epoxy Resins
...Show More Authors

This research studies the development and synthesis of blended nanocomposites filled with Titanium dioxide (TiO2). Blended nanocomposites based on unsaturated polyester resin (UPR) and epoxy resins were synthesized by reactive blending. The optimum quantity from nano partical of titanium dioxide was selected and different weight proportions 1%, 3%, 5%, and 7% ratios of new epoxy are blended with UPR resin. The dielectric breakdown strength and thermal conductivity properties of the blended nanocomposites were compared with those of the basis material (UPR and 3% TiO2).The results show good compatibility epoxy resins with the UPR resin on blending, dielectric breakdown strength values  are higher while thermal conductivity values of

... Show More
View Publication
Publication Date
Wed Mar 08 2017
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Electrical Insulation Breakdown Strength and Thermal Conductivity of Different Blended Nanocomposites of New Epoxy Resins
...Show More Authors

This research studies the development and synthesis of blended nanocomposites filled with Titanium dioxide (TiO2). Blended nanocomposites based on unsaturated polyester resin (UPR) and epoxy resins were synthesized by reactive blending. The optimum quantity from nano partical of titanium dioxide was selected and different weight proportions 1%, 3%, 5%, and 7% ratios of new epoxy are blended with UPR resin. The dielectric breakdown strength and thermal conductivity properties of the blended nanocomposites were compared with those of the basis material (UPR and 3% TiO2).The results show good compatibility epoxy resins with the UPR resin on blending, dielectric breakdown strength values  are higher while thermal conductivity values of

... Show More
View Publication Preview PDF
Publication Date
Tue May 01 2018
Journal Name
Journal Of Physics: Conference Series
The Effects of micro Aluminum fillers In Epoxy resin on the thermal conductivity
...Show More Authors

View Publication
Scopus (20)
Crossref (11)
Scopus Clarivate Crossref
Publication Date
Fri Apr 01 2022
Journal Name
Baghdad Science Journal
Fractographic Analysis of Tensile Failures of Zirconia Epoxy Nanocomposites
...Show More Authors

This work characterizes the fractographic features of the neat epoxy and ZrO2 epoxy nanocomposites. All samples were subjected to a tensile test to determine the tensile strength and tensile modulus. SEM images were used to study the morphology of the fractured surface. The fractographic of the fracture surfaces were studied by microstructure analysis program (j-images) to specify the effect of ZrO2 nanoparticles on tensile performance and failure mechanism for ZrO2 epoxy nanocomposites. The tensile test results show that the addition of ZrO2 nanoparticles (2, 4, 6, 8, and 10 vol.%) to the epoxy matrix leads to increase the tensile strength about 40% for optimal content of ZrO2 nanop

... Show More
View Publication Preview PDF
Scopus Clarivate Crossref
Publication Date
Sat Jan 05 2019
Journal Name
Iraqi Journal Of Physics
Study the effect of sodium hydroxide solution on the thermal conductivity of nanocomposites
...Show More Authors

In this research, hand lay- up technique is used to prepare samples from epoxy resin reinforced with multi- walled carbon nanotubes in different weight fractions (0, 2, 3, 4, 5) wt%. The immersion effect by sodium hydroxide solution (NaOH) at normality (0.3N) for a period of (15 days) on the thermal conductivity of nanocomposites was studied, and compared to natural condition (before immersion). The thermal conductivity of epoxy nanocomposites specimens were carried out using Lee’s disk method. The experimental results showed that thermal conductivity increased with increase weight fraction before and after immersion for all specimens, while the immersion effect leads to decrease thermal conductive values compared to thermal conductivi

... Show More
View Publication Preview PDF
Crossref
Publication Date
Mon Nov 01 2010
Journal Name
Iraqi Journal Of Physics
The Effect of metals as Additives on Thermal conductivity of Epoxy Resin
...Show More Authors

A hand lay-up method was used to prepare Epoxy/ metal composites. Epoxy resin (EP) was used as a matrix with metal particles (Al, Cu, and Fe) as fillers.
The preparation method includes preparing square panels of composites with different weight percentage of fillers (10, 20, 30, 40, and 50%). Standard specimens (88mm in diameter) for thermal conductivity tests were prepared to measure thermal conductivity kexp.The result of experimental thermal conductivity kexp, for EP/metal composites show that, kexp increase with increasing weight percentage, For EP/ Al and EP/Cu composites, and it have have maximum values of 0.33 and 0.35 W/m.K, respectively. While kexp for EP/ Fe composite show slight increase with maximum value of 0.186 W/m.K.

... Show More
View Publication Preview PDF
Publication Date
Thu Jun 07 2018
Journal Name
Applied Physics A
Effect of incorporation of conductive fillers on mechanical properties and thermal conductivity of epoxy resin composite
...Show More Authors

View Publication
Crossref (45)
Crossref
Publication Date
Wed May 01 2019
Journal Name
Materials Science And Engineering
Effect of nanoparticles on thermal conductivity of epoxy resin system
...Show More Authors
Abstract<p>In this paper the effect of mixing TiO2 nanoparticles with epoxy resin is studied. The TiO2 nanoparticles would be synthesis and characterized by scanning electron microscopy (SEM), XRD FTIR, for two particle sizes of 50 and 25 nm. The thermal conductivity is measured with and without composite epoxy resin; the results showed that the thermal conductivity was increased as nanoparticle concentration increased too. The thermal conductivity was increased as particle size decreased.</p>
Preview PDF
Scopus (7)
Crossref (6)
Scopus Clarivate Crossref