Diffraction patterns formed by a ferronematic sample, which contains 4-(trans-4-n-hexylcyclohexyl)-isothiocyanatobenzene (6CHBT) liquid crystal doped with Fe3O4 rodlike magnetic nanoparticles, was studied. The studied mixture can be applicated as a liquid magnetic switch. The diffraction patterns were observed from the micro-lines scribed on the polymer layer, which was contained by the liquid crystal mixture cell, with dimensions of 4 nm for depth and 0.32 µm for width and 5000 line per 1 mm2 in the case of absence and presence of the DC magnetic field. From the experimental results, it was observed that the application of the magnetic field caused more than 17% expansion in the diffraction patterns area at the focused point, while the number of patterns was increased by 25%. This change in the diffraction area due to the application of a magnetic field gives the motive to sense the low DC magnetic field which could be useful in the application of liquid switching.