In this paper, some estimators for the unknown shape parameters and reliability function of Basic Gompertz distribution were obtained, such as Maximum likelihood estimator and some Bayesian estimators under Squared log error loss function by using Gamma and Jefferys priors. Monte-Carlo simulation was conducted to compare the performance of all estimates of the shape parameter and Reliability function, based on mean squared errors (MSE) and integrated mean squared errors (IMSE's), respectively. Finally, the discussion is provided to illustrate the results that are summarized in tables.
This paper deals with estimation of the reliability system in the stress- strength model of the shape parameter for the power distribution. The proposed approach has been including different estimations methods such as Maximum likelihood method, Shrinkage estimation methods, least square method and Moment method. Comparisons process had been carried out between the various employed estimation methods with using the mean square error criteria via Matlab software package.
The paper is concerned with posterior analysis of five exponentiated (Weibull, Exponential, Inverted Weibull, Pareto, Gumbel) distrebutions. The expressions for Bayes estimators of the shape parameters have been derived under four different prior distributions assuming four different loss functions. The posterior predictive distributions have been obtained, and the comparison between estimators made by using the mean squared errors through generated different sample sizes by using simulation technique. In general, the performance of estimators under Chi-square prior using squared error loss function is the best.
Most statistical research generally relies on the study of the behaviour of different phenomena during specific time periods and the use of the results of these studies in the development of appropriate recommendations and decision-making and for the purpose of statistical inference on the parameters of the statistical distribution of life times in The technical staff of most of the manufacturers in the research units of these companies deals with censored data, the main objective of the study of survival is the need to provide information that is the basis for decision making and must clarify the problem and then the goals and limitations of this study and that It may have different possibilities to perform the
... Show MoreAbstract:
One of the important things provided by fuzzy model is to identify the membership functions. In the fuzzy reliability applications with failure functions of the kind who cares that deals with positive variables .There are many types of membership functions studied by many researchers, including triangular membership function, trapezoidal membership function and bell-shaped membership function. In I research we used beta function. Based on this paper study classical method to obtain estimation fuzzy reliability function for both series and parallel systems.
This paper discusses reliability R of the (2+1) Cascade model of inverse Weibull distribution. Reliability is to be found when strength-stress distributed is inverse Weibull random variables with unknown scale parameter and known shape parameter. Six estimation methods (Maximum likelihood, Moment, Least Square, Weighted Least Square, Regression and Percentile) are used to estimate reliability. There is a comparison between six different estimation methods by the simulation study by MATLAB 2016, using two statistical criteria Mean square error and Mean Absolute Percentage Error, where it is found that best estimator between the six estimators is Maximum likelihood estimation method.
In this paper, a new class of ordinary differential equations is designed for some functions such as probability density function, cumulative distribution function, survival function and hazard function of power function distribution, these functions are used of the class under the study. The benefit of our work is that the equations ,which are generated from some probability distributions, are used to model and find the solutions of problems in our lives, and that the solutions of these equations are a solution to these problems, as the solutions of the equations under the study are the closest and the most reliable to reality. The existence and uniqueness of solutions the obtained equations in the current study are dis
... Show More
Abstract
Rayleigh distribution is one of the important distributions used for analysis life time data, and has applications in reliability study and physical interpretations. This paper introduces four different methods to estimate the scale parameter, and also estimate reliability function; these methods are Maximum Likelihood, and Bayes and Modified Bayes, and Minimax estimator under squared error loss function, for the scale and reliability function of the generalized Rayleigh distribution are obtained. The comparison is done through simulation procedure, t
... Show MoreIn this paper an estimator of reliability function for the pareto dist. Of the first kind has been derived and then a simulation approach by Monte-Calro method was made to compare the Bayers estimator of reliability function and the maximum likelihood estimator for this function. It has been found that the Bayes. estimator was better than maximum likelihood estimator for all sample sizes using Integral mean square error(IMSE).
The Boltzmann transport equation is solved by using two- terms approximation for pure gases . This method of solution is used to calculate the electron energy distribution function and electric transport parameters were evaluated in the range of E/N varying from . 172152110./510.VcmENVcm
From the results we can conclude that the electron energy distribution function of CF4 gas is nearly Maxwellian at (1,2)Td, and when E/N increase the distribution function is non Maxwellian. Behavior of electrons transport parameters is nearly from the experimental results in references. The drift velocity of electron in carbon tetraflouride is large compared with other gases
The physical behavior for the energy distribution function (EDF) of the reactant particles depending upon the gases (fuel) temperature are completely described by a physical model covering the global formulas controlling the EDF profile. Results about the energy distribution for the reactant system indicate a standard EDF, in which it’s arrive a steady state form shape and intern lead to fix the optimum selected temperature.