Currently no one can deny the importance of data protection, especially with the proliferation of hackers and theft of personal information in all parts of the world .for these reasons the encryption has become one of the important fields in the protection of digital information.
This paper adopts a new image encryption method to overcome the obstacles to previous image encryption methods, where our method will be used Duffing map to shuffled all image pixels ,after that the resulting image will be divided into a group of blocks for perform the shuffling process via Cross Chaotic Map.
Finally, an image called key image was created by using Quadratic number spirals which will be used to generate numbers of polynomial equations via Lagrange interpolation to perform pixel diffusion.Simulations have been accomplished in order to evaluate the effectiveness of suggested technique, the Experimental results demonstrate that the proposed method can supply sufficient security for the confidentiality of images.
Today the Genetic Algorithm (GA) tops all the standard algorithms in solving complex nonlinear equations based on the laws of nature. However, permute convergence is considered one of the most significant drawbacks of GA, which is known as increasing the number of iterations needed to achieve a global optimum. To address this shortcoming, this paper proposes a new GA based on chaotic systems. In GA processes, we use the logistic map and the Linear Feedback Shift Register (LFSR) to generate chaotic values to use instead of each step requiring random values. The Chaos Genetic Algorithm (CGA) avoids local convergence more frequently than the traditional GA due to its diversity. The concept is using chaotic sequences with LFSR to gene
... Show MoreThe past years have seen a rapid development in the area of image compression techniques, mainly due to the need of fast and efficient techniques for storage and transmission of data among individuals. Compression is the process of representing the data in a compact form rather than in its original or incompact form. In this paper, integer implementation of Arithmetic Coding (AC) and Discreet Cosine Transform (DCT) were applied to colored images. The DCT was applied using the YCbCr color model. The transformed image was then quantized with the standard quantization tables for luminance and chrominance. The quantized coefficients were scanned by zigzag scan and the output was encoded using AC. The results showed a decent compression ratio
... Show MoreInformation security in data storage and transmission is increasingly important. On the other hand, images are used in many procedures. Therefore, preventing unauthorized access to image data is crucial by encrypting images to protect sensitive data or privacy. The methods and algorithms for masking or encoding images vary from simple spatial-domain methods to frequency-domain methods, which are the most complex and reliable. In this paper, a new cryptographic system based on the random key generator hybridization methodology by taking advantage of the properties of Discrete Cosine Transform (DCT) to generate an indefinite set of random keys and taking advantage of the low-frequency region coefficients after the DCT stage to pass them to
... Show MoreSocial media and networks rely heavily on images. Those images should be distributed in a private manner. Image encryption is therefore one of the most crucial components of cyber security. In the present study, an effective image encryption technique is developed that combines the Rabbit Algorithm, a simple algorithm, with the Attractor of Aizawa, a chaotic map. The lightweight encryption algorithm (Rabbit Algorithm), which is a 3D dynamic system, is made more secure by the Attractor of Aizawa. The process separates color images into blocks by first dividing them into bands of red, green, and blue (RGB). The presented approach generates multiple keys, or sequences, based on the initial parameters and conditions, which are
... Show MoreNowadays, still images are used everywhere in the digital world. The shortages of storage capacity and transmission bandwidth make efficient compression solutions essential. A revolutionary mathematics tool, wavelet transform, has already shown its power in image processing. The major topic of this paper, is improve the compresses of still images by Multiwavelet based on estimation the high Multiwavelet coefficients in high frequencies sub band by interpolation instead of sending all Multiwavelet coefficients. When comparing the proposed approach with other compression methods Good result obtained
Most of today’s techniques encrypt all of the image data, which consumes a tremendous amount of time and computational payload. This work introduces a selective image encryption technique that encrypts predetermined bulks of the original image data in order to reduce the encryption/decryption time and the
computational complexity of processing the huge image data. This technique is applying a compression algorithm based on Discrete Cosine Transform (DCT). Two approaches are implemented based on color space conversion as a preprocessing for the compression phases YCbCr and RGB, where the resultant compressed sequence is selectively encrypted using randomly generated combined secret key.
The results showed a significant reduct
Recently, with the development multimedia technologies and wireless telecommunication, Voice over Internet Protocol, becomes widely used in communication between connecting people, VoIP allows people that are connected to the local network or the Internet to make voice calls using digital connection instead of based on the analog traditional telephone network. The technologies of Internet doesn’t give any security mechanism and there is no way to guarntee that the voice streams will be transmitted over Internet or network have not been intercepted in between. In this paper, VoIP is developed using stream cipher algorithm and the chaotic cryptography for key generator. It is based on the chaotic maps for generating a one-time rando
... Show MoreOptical Mark Recognition (OMR) is the technology of electronically extracting intended data from marked fields, such as squareand bubbles fields, on printed forms. OMR technology is particularly useful for applications in which large numbers of hand-filled forms need to be processed quickly and with a great degree of accuracy. The technique is particularly popular with schools and universities for the reading in of multiple choice exam papers. This paper proposed OMRbased on Modify Multi-Connect Architecture (MMCA) associative memory, its work in two phases: training phase and recognition phase. The proposed method was also able to detect more than one or no selected choice. Among 800 test samples with 8 types of grid answer sheets and tota
... Show More