Examination of skewness makes academics more aware of the importance of accurate statistical analysis. Undoubtedly, most phenomena contain a certain percentage of skewness which resulted to the appearance of what is -called "asymmetry" and, consequently, the importance of the skew normal family . The epsilon skew normal distribution ESN (μ, σ, ε) is one of the probability distributions which provide a more flexible model because the skewness parameter provides the possibility to fluctuate from normal to skewed distribution. Theoretically, the estimation of linear regression model parameters, with an average error value that is not zero, is considered a major challenge due to having difficulties, as no explicit formula to calculate these estimates can be obtained. Practically, values for these estimates can be obtained only by referring to numerical methods. This research paper is dedicated to estimate parameters of the Epsilon Skew Normal General Linear Model (ESNGLM) using an adaptive least squares method, as along with the employment of the ordinary least squares method for estimating parameters of the General Linear Model (GLM). In addition, the coefficient of determination was used as a criterion to compare the models’ preference. These methods were applied to real data represented by dollar exchange rates. The Matlab software was applied in this work and the results showed that the ESNGLM represents a satisfactory model.
A new distribution, the Epsilon Skew Gamma (ESΓ ) distribution, which was first introduced by Abdulah [1], is used on a near Gamma data. We first redefine the ESΓ distribution, its properties, and characteristics, and then we estimate its parameters using the maximum likelihood and moment estimators. We finally use these estimators to fit the data with the ESΓ distribution
There is an evidence that channel estimation in communication systems plays a crucial issue in recovering the transmitted data. In recent years, there has been an increasing interest to solve problems due to channel estimation and equalization especially when the channel impulse response is fast time varying Rician fading distribution that means channel impulse response change rapidly. Therefore, there must be an optimal channel estimation and equalization to recover transmitted data. However. this paper attempt to compare epsilon normalized least mean square (ε-NLMS) and recursive least squares (RLS) algorithms by computing their performance ability to track multiple fast time varying Rician fading channel with different values of Doppler
... Show MoreIn this study, we investigate about the estimation improvement for Autoregressive model of the third order, by using Levinson-Durbin Recurrence (LDR) and Weighted Least Squares Error ( WLSE ).By generating time series from AR(3) model when the error term for AR(3) is normally and Non normally distributed and when the error term has ARCH(q) model with order q=1,2.We used different samples sizes and the results are obtained by using simulation. In general, we concluded that the estimation improvement for Autoregressive model for both estimation methods (LDR&WLSE), would be by increasing sample size, for all distributions which are considered for the error term , except the lognormal distribution. Also we see that the estimation improve
... Show MoreAbstract
The logistic regression model is one of the nonlinear models that aims at obtaining highly efficient capabilities, It also the researcher an idea of the effect of the explanatory variable on the binary response variable. &nb
... Show MoreIn this research, we studied the multiple linear regression models for two variables in the presence of the autocorrelation problem for the error term observations and when the error is distributed with general logistic distribution. The auto regression model is involved in the studying and analyzing of the relationship between the variables, and through this relationship, the forecasting is completed with the variables as values. A simulation technique is used for comparison methods depending on the mean square error criteria in where the estimation methods that were used are (Generalized Least Squares, M Robust, and Laplace), and for different sizes of samples (20, 40, 60, 80, 100, 120). The M robust method is demonstrated the best metho
... Show MoreIn this research, we studied the multiple linear regression models for two variables in the presence of the autocorrelation problem for the error term observations and when the error is distributed with general logistic distribution. The auto regression model is involved in the studying and analyzing of the relationship between the variables, and through this relationship, the forecasting is completed with the variables as values. A simulation technique is used for comparison methods depending
The technology of reducing dimensions and choosing variables are very important topics in statistical analysis to multivariate. When two or more of the predictor variables are linked in the complete or incomplete regression relationships, a problem of multicollinearity are occurred which consist of the breach of one basic assumptions of the ordinary least squares method with incorrect estimates results.
There are several methods proposed to address this problem, including the partial least squares (PLS), used to reduce dimensional regression analysis. By using linear transformations that convert a set of variables associated with a high link to a set of new independent variables and unr
... Show MoreThe aim of this research is to estimate the parameters of the linear regression model with errors following ARFIMA model by using wavelet method depending on maximum likelihood and approaching general least square as well as ordinary least square. We use the estimators in practical application on real data, which were the monthly data of Inflation and Dollar exchange rate obtained from the (CSO) Central Statistical organization for the period from 1/2005 to 12/2015. The results proved that (WML) was the most reliable and efficient from the other estimators, also the results provide that the changing of fractional difference parameter (d) doesn’t effect on the results.
This study's objective is to assess how well UV spectrophotometry can be used in conjunction with multivariate calibration based on partial least squares (PLS) regression for concurrent quantitative analysis of antibacterial mixture (Levofloxacin (LIV), Metronidazole (MET), Rifampicin (RIF) and Sulfamethoxazole (SUL)) in their artificial mixtures and pharmaceutical formulations. The experimental calibration and validation matrixes were created using 42 and 39 samples, respectively. The concentration range taken into account was 0-17 μg/mL for all components. The calibration standards' absorbance measurements were made between 210 and 350 nm, with intervals of 0.2 nm. The associated parameters were examined in order to develop the optimal c
... Show MoreIn this paper, the Monte-Carlo simulation method was used to compare the robust circular S estimator with the circular Least squares method in the case of no outlier data and in the case of the presence of an outlier in the data through two trends, the first is contaminant with high inflection points that represents contaminant in the circular independent variable, and the second the contaminant in the vertical variable that represents the circular dependent variable using three comparison criteria, the median standard error (Median SE), the median of the mean squares of error (Median MSE), and the median of the mean cosines of the circular residuals (Median A(k)). It was concluded that the method of least squares is better than the
... Show More