In this paper, a mathematical model consisting of harmful phytoplankton and two competing zooplankton is proposed and studied. The existence of all possible equilibrium points is carried out. The dynamical behaviors of the model system around biologically feasible equilibrium points are studied. Suitable Lyapunov functions are used to construct the basins of attractions of those points. Conditions for which the proposed model persists are established. The occurrence of local bifurcation and a Hopf bifurcation are investigated. Finally, to confirm our obtained analytical results and specify the vital parameters, numerical simulations are used for a hypothetical set of parameter values.
In this paper, a mathematical model consisting of the two harmful
phytoplankton interacting with a herbivorous zooplankton is proposed and studied.
The existence of all possible equilibrium points is carried out. The dynamical
behaviors of the model system around biologically feasible equilibrium points are
studied. Suitable Lyapunov functions are used to construct the basins of attractions
of those points. Conditions for which the proposed model persists are established.
The occurrence of local bifurcation and a Hopf bifurcation are investigated. Finally,
to confirm our obtained analytical results and specify the vital parameters, numerical
simulations are used for a hypothetical set of parameter values.
<p>The objective of this paper is to study the dynamical behavior of an aquatic food web system. A mathematical model that includes nutrients, phytoplankton and zooplankton is proposed and analyzed. It is assumed that, the phytoplankton divided into two compartments namely toxic phytoplankton which produces a toxic substance as a defensive strategy against predation by zooplankton, and a nontoxic phytoplankton. All the feeding processes in this food web are formulating according to the Lotka-Volterra functional response. This model is represented mathematically by the set of nonlinear differential equations. The existence, uniqueness and boundedness of the solution of this model are investigated. The local and global stability
... Show MoreIn this paper harmful phytoplankton and herbivorous zooplankton model with Hollimg type IV functional response is proposed and analyzed. The local stability analysis of the system is carried out. The global dynamics of the system is investigated with the help of the Lyapunov function. Finally, the analytical obtained results are supported with numerical simulation.
The aim of this work is to calculate the one- electron expectation value of the electronic charge of atomic system Z=2,3….7 and we compare with He atom . the electronic density function D(r1) of He atom and like ions are evaluated . using Hartree –Fock wave.
The presnty study included physical , chemical and phycological study of choosen one station in Habbaniya lake to investigat the diurnal variation at each hour along the 24 hours . Water temperature showed clear variations and coincided with the air temperature of study , Habbaniya Water was alkaline with pH more than 7 without clear diurnal variations . Conductivity , Total hardness , Calcium and Magnesium values showed no clear varitions . Chloride and Salinity values appeared relatively stable . The data showed a relative increasing in Dissolve oxygen values during the night hours.On the other hand the alkalinity and acidity values were unstable during the 24 hours of the study. According to the quantitative s
... Show MoreThe dynamical behavior of an ecological system of two predators-one prey updated with incorporating prey refuge and Beddington –De Angelis functional response had been studied in this work, The essential mathematical features of the present model have been studied thoroughly. The system has local and global stability when certain conditions are met. had been proved respectively. Further, the system has no saddle node bifurcation but transcritical bifurcation and Pitchfork bifurcation are satisfied while the Hopf bifurcation does not occur. Numerical illustrations are performed to validate the model's applicability under consideration. Finally, the results are included in the form of points in agreement with the obt
... Show MoreIn this research, we study the dynamics of one parameter family of meromorphic functions . Furthermore, we describe the nature of fixed points of the functions in ,and we explain the numbers of real fixed points depending on the critical point . So, we develop some necessary conditions for the convergence of the sequence when .
In this paper, the aquatic food chain model, consisting of Phytoplankton, Zooplankton, and Fish, in the contaminated environment is proposed and studied. Modified Leslie–Gower model with Holling type IV functional response are used to describe the growth of Fish and the food transition throughout the food chain, respectively. The toxic substance affects directly the Phytoplankton and indirectly the other species. The local stability analysis of all possible equilibrium points is done. The persistence conditions of the model are established. The basin of attraction for each point is specified using the Lyapunov function. Bifurcation analysis near the coexistence equilibrium point is investigated. Detecting the existence of chao
... Show More