An oil spillage has been a great threat to human life in parts of Koya district, especially through the contamination of domestic water. An attempt was made to find and map the extent of pollution in the area. According to a field survey, more than 17 springs and 34 hand-dug and artesian wells have been contaminated with crude oil. The contamination was recorded recently after loading began of tens of oil tankers in the Taq-Taq oil field, and as a result hundred barrels of oil have spilled into the creeks and soil daily. Hence, 2D resistivity imaging was adopted via four laid-out traverses running normal to the strike of the outcrops. A Wenner-Schlumberger array configuration was used to achieve both vertical and lateral resistivity distributions for the investigated site; profiles were surveyed using 5-metre electrode spacing. The interpretation shows that after one year, contamination anomalies of high resistivity represent the locations of contaminated zones, and the migration of the spilled oil is detected within the dry sandstone of the Enjana (Upper Fars) Formation. So, there is contamination by crude oil of the sandstone above the water table, and after one year this has led to a decrease in conductivity of the contaminated zone owing to the absence of natural bioactivity. The migration paths of the crude oil beneath the subsurface were mapped and were found within the sandstone and siltstone layers, trending NW-SE.
Unknown subsurface leaking water sources and possible subsurface seepage from a sewage tank in a garden at Al-Khawarizmi engineering college, University of Baghdad, were detected in this study. The 2D electrical resistivity imaging. The ERI survey is carried out along two lines, 60m and 50m long, with an electrode spacing of 1 m, forming a cross using the Wenner-Schlumberger array configuration. Line 1 is 60m, while line 2 is 50m. Soil samples were collected from line 1 at positions of electrode 34, which shows a high resistivity value, and electrode 55, which shows low resistivity, for laboratory analysis. Robust inversion and modelling processes showed relative change and high contrast in interpreted resistivities. Soil analy
... Show MoreThe current research demonstrates the ERI method's effectiveness as a supplementary engineering site investigation approach. Engineering site research is important to indicate the subsoil of proposed production sites. The benefit of the dipole-dipole array for ERI electrical resistivity imaging is that it provides informative records of subsurface geology and condition along with profiles. The dipole-dipole array was performed along with three parallel profiles at the Diyala University site to identify the buried facilities (pipes and cables) in the area. The buried electric cable embedded in a plastic tube was used for simulation to report and verify the field resistivity results. Interpretation of field facts confirmed that
... Show MoreMany important archaeological sites in Iraq still need to be preserved. Some of these sites were subjected to destruction and negligence. So, exploring these sites represents a priority for its protection. A 2D Electrical Resistivity Imaging (ERI) as a non-invasive geophysical survey method was implemented at a part of the Borsippa archaeological site near Babylon to search for the subsurface archaeological artefacts/structures. Electrical resistivity measurements were carried out using a Dipole-Dipole array. Steps were taken to process and filter using Horizontal profiles, forward modelling, and 2D inverse models to analyze the resistivity measurements. The ERI inversion results show that the superficial conductive zone produced va
... Show MoreThe 2D imaging survey was conducted across an unknown K- 3 cavity that is located in Haditha area-Western Iraq.2D measurements are collected along two intercrossing traverses above the cavity with 105m length of each one. Dipole-dipole array is performed with n-factor of 6 and a-spacing equals to 5m. The inverse models of 2D imaging technique showed clearly that the resistivity contrast between the anomalous part of cavity and background resistivity of rocks is about 800:100 Ωm .In addition, the invers models showed that the depth from ground surface to the upper roof of cavity approximately equals to 11m near the cavity operator. So, the K-3 cavity is well defined from 2D imaging with Dipole –dipole array in comparison with the actua
... Show MoreCracking of soils affects their geotechnical properties and behavior such as soil strength and stability. In this paper, 2D Electrical Resistivity Imaging Method, as a non-invasive technique, was adopted to investigate the effect of soil cracks of a centemetric scale on resistivity of sandy soil. The electrical resistivity measurements were carried out using ABEM SAS 300C Terrameter system at a laboratory scale using Wenner array. The measurements were interpreted using horizontal profiles, forward modeling and 2D inverse resistivity sections. The results showed that soil cracks cause significant changes in soil resistivity. These changes can be attributed to the high resistivity contrast between the highly resistive air-filled cracks an
... Show MoreBasal breccia unconformity layer between Anah and Euphrates Formations in Al-Haqlaniyah area, Western desert, include enormous sinkholes and cavities usually cause severe damages to any kind of engineering facilities built over it. Two-dimensional resistivity imaging has been applied to detect the depth and extent of the subsurface caves at five stations. The dipole-dipole array is chosen with an electrode spacing of 2 meters. 2D Dipole-dipole imaging inverse models show the resistivity values have a big variation between the anomalous background resistivity of rocks and part of cavities. These models showed shallow cavities at 1 to 3 m depth and others at 5to 6 m depth and extending to a depth of 23 m. The unconformity layer
... Show MoreThe friendly-environment geophysical methods are commonly used in various engineering and near-surface environmental investigations. Electrical Resistivity Imaging technique was used to investigate the subsurface rocks, sediments properties of a proposed industrial site to characterize the lateral and vertical lithological changes. via the electrical resistivity, to give an overview about the karst, weak and robust subsoil zones. Nineteen 2D ERI profiles using Wenner array with 2 m electrode spacing have been applied to investigate the specific industry area. One of these profiles has been conducted with one-meter electrode spacing. The surveyed profiles are divided into a number of blocks, each block consists of several parallel pr
... Show MoreThe 2D electrical resistivity imaging (ERI) is a non-destructive method with good efficiency to detect shallow subsurface features. The archeological subsurface features were investigated with this method in most cases with the assistance of other methods such as GPR method. Eleven 2D ERI profiles were carried out to investigate the subsurface archeological features in the Kish site in the Babylon area. The 2D electrical resistivity survey was achieved with ABEM Terrameter-LS2 Device and 30 electrodes with 1-meter spacing between the adjacent electrodes along each profile. The length of the profile is 29 meters and the spacing between the adjacent profiles is 3 meters. The software RES2DINV was used to obtain the final inverted
... Show MoreEngineering project assessment at Al-Muthana Airport in Baghdad, Iraq, has been studied using a 3D electrical resistivity imaging survey. The site investigation is crucial for assessing the future of the region's infrastructures since it reveals the location of buried facilities or weak zones below the surface and measures localized groundwater levels. Wenner-Schlumberger array was used to conduct four parallel 2D electrical resistivity spreads (MU1 to MU4). Each spread line was 100 m in length with 1 m electrode spacing and an average spacing of 9 meters between any two adjacent lines. The depth of the investigation was around 23.8 m. Survey lines were drawn going from northwest to southeast. These spreads were combined to prov
... Show MoreKirchhoff Time migration was applied in Pre and Post-Stack for 2D seismic survey for line AJ-99N, that is located in Ajeel oilfield in Salah Al-Din Governorate, Central Iraq. The process follows several accurate steps to reach the final time migration stage. The results of applied time migration give an accurate image for the Ajeel anticline reservoir and to improve the signal to noise ratio. Pre-Stack shows a clearer image for the structure in the study area, and the time-frequency analysis insure the result.