Preferred Language
Articles
/
ijs-12366
On the Size of Complete Arcs in Projective Space of Order 17
...Show More Authors

The main goal of this paper is to show that a
-arc in
and
is subset of a twisted cubic, that is, a normal rational curve. The maximum size of an arc in a projective space or equivalently the maximum length of a maximum distance separable linear code are classified. It is then shown that this maximum is
for all dimensions up to
.

View Publication Preview PDF
Quick Preview PDF
Publication Date
Sat Apr 01 2023
Journal Name
Baghdad Science Journal
New sizes of complete (k, 4)-arcs in PG(2,17)
...Show More Authors

              In this paper, the packing problem for complete (  4)-arcs in  is partially solved. The minimum and the maximum sizes of complete (  4)-arcs in  are obtained. The idea that has been used to do this classification is based on using the algorithm introduced in Section 3 in this paper. Also, this paper establishes the connection between the projective geometry in terms of a complete ( , 4)-arc in  and the algebraic characteristics of a plane quartic curve over the field  represented by the number of its rational points and inflexion points. In addition, some sizes of complete (  6)-arcs in the projective plane of order thirteen are established, namely for  = 53, 54, 55, 56.

View Publication Preview PDF
Scopus Crossref
Publication Date
Thu May 11 2017
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
On Projective 3-Space Over Galois Field
...Show More Authors

        The purpose of this paper is to give the definition of projective 3-space PG(3,q) over Galois field GF(q), q = pm for some prime number p and some integer m.

        Also, the definition of the plane in PG(3,q) is given and state the principle of duality.

        Moreover some theorems in PG(3,q) are proved.

View Publication Preview PDF
Publication Date
Sun Apr 30 2017
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Classification and Construction of (k,3)-Arcs on Projective Plane Over Galois Field GF(9)
...Show More Authors

  In this work, we construct and classify the projectively distinct (k,3)-arcs in PG(2,9), where k ≥ 5, and prove that the complete (k,3)-arcs do not exist, where 5 ≤ k ≤ 13. We found that the maximum complete (k,3)-arc in PG(2,q) is the (16,3)-arc and the minimum complete (k,3)-arc in PG(2,q) is the (14,3)-arc. Moreover, we found the complete (k,3)-arcs between them.

View Publication Preview PDF
Publication Date
Sun Apr 30 2017
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Classification and Construction of (k,3)-Arcs on Projective Plane Over Galois Field GF(7)
...Show More Authors

  The purpose of this work is to study the classification and construction of (k,3)-arcs in the projective plane PG(2,7). We found that there are two (5,3)-arcs, four (6,3)-arcs, six (7,3)arcs, six (8,3)-arcs, seven (9,3)-arcs, six (10,3)-arcs and six (11,3)-arcs.         All of these arcs are incomplete.         The number of distinct (12,3)-arcs are six, two of them are complete.         There are four distinct (13,3)-arcs, two of them are complete and one (14,3)-arc which is incomplete.         There exists one complete (15,3)-arc.
 

View Publication Preview PDF
Publication Date
Thu Dec 02 2021
Journal Name
Iraqi Journal Of Science
The group action on a projective plane over finite field of order sixteen
...Show More Authors

The goal of this paper is to construct an arcs of size five and six with stabilizer groups of type alternating group of degree five and degree six . Also construct an arc of degree five and size with its stabilizer group, and then study the effect of and on the points of projective plane. Also, find a pentastigm which has the points on a line. Partitions on projective plane of order sixteen into subplanes and arcs have been described.

View Publication Preview PDF
Publication Date
Wed Oct 31 2018
Journal Name
Iraqi Journal Of Science
Some application of coding theory in the projective plane of order three
...Show More Authors

The main aim of this paper is to introduce the relationship between the topic of coding theory and the projective plane of order three. The maximum value of size of code over finite field of order three and an incidence matrix with the parameters,  (length of code),  (minimum distance of code) and  (error-correcting of code ) have been constructed. Some examples and theorems have been given.

View Publication Preview PDF
Publication Date
Sun Apr 30 2023
Journal Name
Iraqi Journal Of Science
Classification of the Projective Line over Galois Field of Order 31
...Show More Authors

Our research is related to the projective line over the finite field, in this paper, the main purpose is to classify the sets of size K on the projective line PG (1,31), where K = 3,…,7 the number of inequivalent K-set with stabilizer group by using the GAP Program is computed.

View Publication
Scopus Crossref
Publication Date
Sun Jul 29 2018
Journal Name
Iraqi Journal Of Science
On the Embedding of an Arc Into a Cubic Curves in a Finite Projective Plane of Order Five
...Show More Authors

The main aims of this research is to find the stabilizer groups of a cubic curves over a finite field of order , studying the properties of their groups and then constructing the arcs of degree  which are embedding in a cubic curves of even size which are considering as the arcs of degree . Also drawing all these arcs.

View Publication Preview PDF
Publication Date
Thu Apr 20 2023
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Extension of Cap by Size and Degree in the Space PG(3,11)‎
...Show More Authors

A cap of size  and degree  in a projective space, (briefly; (k,r)-cap) is a set of  points with the property that each line in the space meet it in at most  points. The aim of this research is to extend the size and degree of complete caps and incomplete caps, (k, r)-caps of degree r<12 in the finite projective space of dimension three over the finite field of order eleven, which already exist and founded by the action of subgroups of the general linear group over the finite field of order eleven and degree four, to (k+i,r+1) -complete caps. These caps have been classified by giving the t_i-distribution and -distribution. The Gap programming has been used to execute the designed algorit

... Show More
View Publication Preview PDF
Crossref
Publication Date
Sun May 17 2020
Journal Name
Iraqi Journal Of Science
Partitions on the Projective Plane Over Galois Field of Order 11^m, m=1, 2, 3
...Show More Authors

This research is concerned with the study of the projective plane over a finite field . The main purpose is finding partitions of the projective line PG( ) and the projective plane PG( ) , in addition to embedding PG(1, ) into PG( ) and PG( ) into PG( ). Clearly, the orbits of PG( ) are found, along with the cross-ratio for each orbit. As for PG( ), 13 partitions were found on PG( ) each partition being classified in terms of the degree of its arc, length, its own code, as well as its error correcting. The last main aim is to classify the group actions on PG( ).

View Publication Preview PDF
Scopus (2)
Scopus Crossref