Baker’s yeast (Saccharomyces cerevisiae) has been genetically engineered to
ferment the pentose sugar xylose present in lignocellulosic biomass. One of the
reactions controlling the rate of xylose utilization is catalyzed by xylose reductase
(XR).The current study describes xylose reductase from Spathasporapassalidarum
with NADH preference. According to JGI site the gene coding for this enzyme
contains 954 nucleotides and it consists of 317 amino acids. The restriction sites for
the enzymes SacII and NotI located on the 5P
´
Ptermini for both the forward and
reverse specific primers were designed using Lasergen 9.0 program. The genomic
DNA was isolated and purified from S .passalidarum. Polymerase chain reaction
(PCR) was used to amplify this gene. The amplified gene was cloned into pSN303
plasmid resulting of the pYIM1 plasmid and then transformed into Escherichia coli.
This plasmid was reisolated from E. coli, sequenced,and finally transformed into S.
cerevisiae. The yeast transformants carrying pYIM1 plasmid named YJTY1. The
specific activity of enzyme was 1.55 and 0.48 U/mg on NADH and NADPH
respectively for YJTY1. This enzyme has a natural preference for NADH which
makes it a good candidate for combination with NADP
+
Pdependent xylitol
dehydrogenase which may enable S. cerevisiae to utilize xylose under anaerobic
conditions and convert it to ethanol.
A total of four types of instant dry yeast
Saccharomyces Cerevisiae cells were immobilized in calcium alginate beads and activated charcoal for use in the
production of ethanol from batch fermentation of sugar beet waste. Treatment of the waste with NaOH to increase the
ability of lignocellulose material to hydrolysis by acid (2N H2SO4) to monosaccharide and disaccharide (mainly glucos).
The high reducing sugar concentration obtained was equal to 9.2gm/100ml (10Brix) after treatment. Fermentation
parameters, are (pH, glucose concentration (2.5-25 gm/100ml), immobilized agent concentration (2.5-25 gm/100ml)
were studied to find the optimum physiological condition. And the highest ethanol concentration obtained from the
fermentation in the presence of 20%(wt/v) ca
Five Saccharomyces cerevisiae isolated from the ability of chitinase production from the isolates were studied. Quantitative screening appeared that Saccharomyces cerevisiae S4 was the highest chitinase producer specific activity 1.9 unit/mg protein. The yeast was culture in liquid and solid state fermentation media (SSF). Different plant obstanases were used for (SSF) with the chitine, while liquid media contained chitine with the diffrented nitrogen source. The favorable condition for chitinase producers were incubated at 30 ºC at pH 6 and 1% colloidal chitine.
The aim of study To purify GPCR from a local strain of S. cerevisiae using Ion exchange and gel filtration chromatography techniques , by packing materials for columns which will be chosen of low cost comparing to the already used in published researches, which depend on the costly affinity chromatography and other expensive methods of purification. Local strain of S. cerevisiae chosen for extraction and purification of G-protein coupled receptor (GPCR) .The strains were obtained from biology department in Al- Mosul University, Iraq. The isolated colony was activated on Yeast Extract Pepton Dextrose Broth (YEPDB) and incubated at 30 C˚ for 24 h .Loop fully of the yeast culture was transferred to (10ml) of yeast extract peptone glucose
... Show MoreSaccharomyces cerevisiae filtrate showed inhibitory effect against Fusarium spp. when grow in a liquid medium (Sabouraud) with different concentrations (1, 3, 5) %. The higher inhibitory effect against fungus growth was (24.5) mm at (5%) in PDA medium compared with control (36.5) mm during the seventh day propagation. The filtrate of Lactobacillus plantarum isolate was mixed with the PDA medium ,which showed inhibitory effect against Fusarium spp. The concentrated filtrate( one fold) appcarcd a higher effect against the same fungus compared with un concentrated filtrate one. Saceharomyces cerevisiae and Lactobacillus plantarum
... Show MoreThe study aimed to determine of some Optimum conditions for bioremediation and removing of seven mineral elements included hexavalent chromium, nickel, cobalt, cadmium, lead, iron and copper as either alone or in group by living and heat treated cells of baker’s yeast Saccharomyces cerevisiae. The dried baker's yeast from Aldnaamaya China Company was used in this study. Biochemical tests was used to ensure yeast belonging to S. cerevisiae and then used to remove the mentioned mineral elementes under different conditions which included incubation period, pH, and temperature. It was found that the best of these conditions was 60 minutes for duration of incubation, 6 for pH, 25 ᵒC for temperature. During the study the behavior of living
... Show MoreIn this study, the effect of Nd: YAG laser on the activity of superoxide dismutase (SOD) and alcoholdehydrogenase (ADH) was investigated. The Saccharomyces cells were irradiated using 532nm Q-Switched Nd: YAG laser with (1Hz) frequency. Different fluences 11.3, 22.6 and 33.9mJ/cm2 and different number of pulses 15, 30 and 60 pulse were used. The irradiated cells were incubated in a liquid nutritive medium for 24 hours. After incubation, the cells were harvested and disrupted to extract the intracellular enzymes and their activities were assessed. In comparison with the control, the irradiated cells showed a significant increase in the activity and the specific activity of SOD at energy densities of 11.3 and 22.6mJ/cm2 at 30 and 60 pulses
... Show MoreKaolin/Gum Arabic nanocomposite was cheaply synthesized from Kaolin and Gum Arabic. The Kaolin/Gum Arabic nanocomposite suspension, Gum Arabic extracts and Kaolin suspension were applied as antifungal agents. The antifungal activity was tested using agar well diffusion method where by wells were made on the petri dishes with cork borer 6mm diameter in size and various concentrations (150 µg/L, 200 µg/L, and 250 µg/L) of Gum Arabic ethanol extracts, Gum Arabic /Kaolin nanocomposite, and Kaolin was propelled into the wells with the help of micropipette and the petri dishes were allowed to stand for 30 minutes to ensure proper diffusion before being incubated at 37oC. The results showed that synthesized Kaolin/Gum Arabic nanoc
... Show More