In this paper, a mathematical model consisting of the two harmful
phytoplankton interacting with a herbivorous zooplankton is proposed and studied.
The existence of all possible equilibrium points is carried out. The dynamical
behaviors of the model system around biologically feasible equilibrium points are
studied. Suitable Lyapunov functions are used to construct the basins of attractions
of those points. Conditions for which the proposed model persists are established.
The occurrence of local bifurcation and a Hopf bifurcation are investigated. Finally,
to confirm our obtained analytical results and specify the vital parameters, numerical
simulations are used for a hypothetical set of parameter values.
In this paper, a mathematical model consisting of harmful phytoplankton and two competing zooplankton is proposed and studied. The existence of all possible equilibrium points is carried out. The dynamical behaviors of the model system around biologically feasible equilibrium points are studied. Suitable Lyapunov functions are used to construct the basins of attractions of those points. Conditions for which the proposed model persists are established. The occurrence of local bifurcation and a Hopf bifurcation are investigated. Finally, to confirm our obtained analytical results and specify the vital parameters, numerical simulations are used for a hypothetical set of parameter values.
In this paper harmful phytoplankton and herbivorous zooplankton model with Hollimg type IV functional response is proposed and analyzed. The local stability analysis of the system is carried out. The global dynamics of the system is investigated with the help of the Lyapunov function. Finally, the analytical obtained results are supported with numerical simulation.
<p>The objective of this paper is to study the dynamical behavior of an aquatic food web system. A mathematical model that includes nutrients, phytoplankton and zooplankton is proposed and analyzed. It is assumed that, the phytoplankton divided into two compartments namely toxic phytoplankton which produces a toxic substance as a defensive strategy against predation by zooplankton, and a nontoxic phytoplankton. All the feeding processes in this food web are formulating according to the Lotka-Volterra functional response. This model is represented mathematically by the set of nonlinear differential equations. The existence, uniqueness and boundedness of the solution of this model are investigated. The local and global stability
... Show MoreThe skull is one of the largest bones in the body. It is classified into flat bones that maintain the important organic structures; which are the brain, eyes, and tongue. The skull is a strong support for preserving these organs but they are various according to the type of animals and the environments in which they live and the nature of their nutrition. There are many differences among living organisms in terms of the bones in the skull, their difference or disappearance and their length in the shape of the head. The samples were taken from the scientific storage in the Iraq Natural History Research Center and Museum; Cape hare Lepus capensis (Linnaeus, 1758) and Red fox Vulpes vulpes (Linnaeus, 1758) and the study was conducted o
... Show MoreThe skull is one of the largest bones in the body. It is classified into flat bones that maintain the important organic structures; which are the brain, eyes, and tongue. The skull is a strong support for preserving these organs but they are various according to the type of animals and the environments in which they live and the nature of their nutrition. There are many differences among living organisms in terms of the bones in the skull, their difference or disappearance and their length in the shape of the head. The samples were taken from the scientific storage in the Iraq Natural History Research Center and Museum; Cape hare Lepus capensis (Linnaeus, 1758) and Red fox Vulpes vulpes (Linnaeus, 1758) and the study was conducted o
... Show MoreIn this paper, the aquatic food chain model, consisting of Phytoplankton, Zooplankton, and Fish, in the contaminated environment is proposed and studied. Modified Leslie–Gower model with Holling type IV functional response are used to describe the growth of Fish and the food transition throughout the food chain, respectively. The toxic substance affects directly the Phytoplankton and indirectly the other species. The local stability analysis of all possible equilibrium points is done. The persistence conditions of the model are established. The basin of attraction for each point is specified using the Lyapunov function. Bifurcation analysis near the coexistence equilibrium point is investigated. Detecting the existence of chao
... Show MoreAn eco-epidemiological system incorporating a vertically transmitted infectious disease is proposed and investigated. Micheal-Mentence type of harvesting is utilized to study the harvesting effort imposed on the predator. All the properties of the solution of the system are discussed. The dynamical behaviour of the system, involving local stability, global stability, and local bifurcation, is investigated. The work is finalized with the numerical simulation to observe the global behaviour of the solution.
Fear, harvesting, hunting cooperation, and antipredator behavior are all important subjects in ecology. As a result, a modified Leslie-Gower prey-predator model containing these biological aspects is mathematically constructed, when the predation processes are described using the Beddington-DeAngelis type of functional response. The solution's positivity and boundedness are studied. The qualitative characteristics of the model are explored, including stability, persistence, and bifurcation analysis. To verify the gained theoretical findings and comprehend the consequences of modifying the system's parameters on their dynamical behavior, a detailed numerical investigation is carried out using MATLAB and Mathematica. It is discovered that the
... Show More