In this paper, Zinc oxide were deposited on a glass substrate at room temperature (RT) and two annealing temperatures 350ºC and 500ºC using laser induced plasma technique. ZnO nanofilms of 200nm thickness have been deposited on glass substrate. X-RAY diffraction (XRD), atomic force microscopy and UV-visible spectrophotometer were used to analyze the results. XRD forms of ZnO nanostructure display hexagonal structure with three recognized peaks (100), (002), and (101) orientations at 500ºC annealing temperature. The optical properties of ZnO nanostructure were determined spectra. The energy gap was 3.1 eV at 300 oC and 3.25eV at 500ºC annealing temperature.
Background: High-energy visible (HEV) possesses high-frequency in the violet-blue band of the visible light spectrum. Blue light has relevance to ophthalmology via photochemically-induced retinal injury.
Objectives: To explore the spatial-temporal mapping of online search behavior concerning HEV light.
Materials and Methods: We retrieved raw data of web search volume, via Microsoft Google Trends, using five search topics; "Biological effects of HEV light", "Vision impairment", "Macular degeneration", "Retinal tear", and "Retinal detachment", for the period 2004-2020.
Results: Web users, mainly from Far-East Asia and Australasia, were most interest
... Show More The most likely fusion reaction to be practical is Deuterium and Helium-3 (ð·âˆ’ð»ð‘’
3 ), which is highly desirable because both Helium -3 and Deuterium are stable and the reaction produces a 14 ð‘€ð‘’𑉠proton instead of a neutron and the proton can be shielded by magnetic fields. The strongly dependency of the basically hot plasma parameters such as reactivity, reaction rate, and energy for the emitted protons, upon the total cross section, make the problems for choosing the desirable formula for the cross section, the main goal for our present work.