Seventeen core samples were taken from Luhais and Tuba oil wells according to the presence of oil bearing formations. These wells were located in the province of Basra/southern Iraq. The formation that the samples are collected from Zubair and Mishrif formations. The core samples were taken from the wells at different depths. In the current study the ultrasonic technique was conducted to measure (Vp and Vs) as well as to determine some petrophysical properties for core samples and some elastic moduli such as (Young's modulus, Bulk modulus, Shear modulus, Poisson's ratio and Lame's constant) depending on the values of Vp and Vs as well as density. The relationships between seismic wave velocities with elastic moduli and petrophysical properties are plotted. Two core samples were selected from Lu-5 well core 4 to conduct laboratory measurements for porosity and compare it with the results of porosity which calculated from Vs.
Twenty nine core samples were taken from Ratawi 7 Oil well according to the presence of oil in formation and availability of core samples. This well is located in the province of Basra/southern Iraq. The samples were collected from Yamama Formation. The core samples are taken from the well at different depths, ranging between (3663m-3676m). The range of Vp for these core samples is (668-4017 m/sec) and its average is (1779 m/sec), While the range of Vs is (291-1854 m/sec) and its average is (796 m/sec). In the current study the ultrasonic method is conducted to measure Vp, Vs as well as some petrophysical properties for core samples and some elastic moduli such as (Young's modulus, Bulk modulus, Shear modulus, Poisson's ratio and Lame's
... Show MorePetrophysical properties of Mishrif Formation at the Tuba field determined from interpretation of open log data of(Tu-2,3,4,5,6,12,24,and 25) wells. These properties include total (effected) and secondary porosity, as well as moveable and residual oil saturation into invaded and uninvaded zones. According to Petrophysical properties it is possible to divided Mishrif Formation into three reservoir units (RU1,2,and 3) separated by four cap rocks (Bar1,2,3,and 4) . Three-dimension reservoir model is established by used (Petrel, 2009) Software for each reservoir units. Result shows that the second and third reservoir units represent important reservoir units of Mishrif Formation. Thickness and reservoir properties enhanced toward middle and
... Show MoreThe current study includes building (CPI) & Petrophysical Evaluation of the Mishrif Formation (Cenomanian-Early Turonian) in Tuba oilfield, southern Iraq by using Interactive Petrophysics Program v3.5 (IP) to evaluate different logs parameters that control the reservoir quality of Mishrif Formation such as shale volume, effective porosity, and water saturation. Mishrif Formation is subdivided into several units, which are characterized by different reservoir properties. These units are Top of Mishrif, MA, CR2, MB1, and MB2.The results of computer processed interpretation (CPI) show that the major reservoir unit are (MB1 and MB2), which are characterized by high effective porosity and oil saturation. In addition, these uni
... Show MoreThis study is achieved in the local area of the Eridu oil field, where the Mishrif Formation is considered the main productive reservoir. The Mishrif Formation was deposited during the Cretaceous period in the secondary sedimentary cycle (Cenomanian-Early Turonian as a part of the Wasia Group, a carbonate succession widespread throughout the Arabian Plate.
The Mishrif Formation already have been evaluated in terms of depositional environments and their diagenetic processes. Here, it will test the previous conclusions with petrophysical properties delineated by using well logging. The results show there is a fully matching with two reservoir units (MA and MB). Dissolution and primary porosity are responsible for f
... Show MorePetrophysical properties of Mishrif Formation at Amara oil field is determined
from interpretation of open log data of (Am-1, 2 ,3 ,4 ,5 ,6 ,7 ,8 ,9 ,10 ,11 ,12
and13) wells. These properties include the total, the effected and the secondary
porosity, as well as the moveable and the residual oil saturation in the invaded and
uninvaded zones. According to petrophysical properties it is possible to divided
Mishrif Formation which has thickness of a proximately 400 m, into seven main
reservoir units (MA, MB11, MB12, MB13, MB21, MC1, MC2) . MA is divided into
four secondary reservoir units , MB11 is divided into five secondary reservoir units ,
MB12 is divided into two secondary reservoir units , MB13 is divided into
A comparison was conducted between two wells, Kt-1and Kt-2, in Kumait and two wells, Du-1and Du-2, in Dujaila oil fields that belong to Mishrif formation, southern Iraq. Seismic inversion method was employed to detect oil and water reservoirs. The comparison included the behavior of acoustic impedance (AI) of fluids and the lithology with related petrophysical properties. The values of water saturation, Shale volume (Vsh), and effective porosity were compared between the AI, two fluid reservoirs. It was found that the AI value for the oil reservoir unit is relatively low to medium, whereas it was relatively medium for the water reservoir. Effective porosity value showed, in general, an increase in the oil reservoir and
... Show MoreMishrif Formation was deposited during The Cenomanian-Early Turonian, which has been studied in selected Tuba and Zubair OilFields, these wells (TU-5, TU-24, TU-40, ZB-41, ZB-42, and ZB-46) are located within Mesopotamian basin at southern Iraq and considered as a major carbonate reservoir in Iraq and the Arabian Gulf. The palaeontological investigations mainly depending on benthonic foraminifera of the studied wells of Tuba and Zubair Oilfields in Mishrif Formation, twenty-four species belonging to fourteen genera are recognized of benthonic foraminifera, which has been recognized through this study, especially benthonic foraminiferal, indicating four zones as follows:
The aim of this study is to determine and evaluate the units and subunits of Mishrif Formation in Garraf oil field 85 km north of Nasiriyah city depending mainly on the geophysical well logging data and other amiable geological information. The sets of the geophysical well logs data acquired from GA-4, GA- AIP, GA- B8P, GA-3 and GA-5 wells of Garraf oil field are used to determine the petrophysical and lithological properties for each zone in Mishrif Formation to locate, define and evaluate hydrocarbon production from each zone in the reservoir which is also known as formation evaluation. The digitization was done by using Didger software and the interpretations were made using Interactive Petrophysics Program v 3.5 and Petrel software.
... Show MoreThe objective of this paper is determining the petrophysical properties of the Mauddud Formation (Albian-Early Turonian) in Ratawi Oil Field depending on the well logs data by using interactive petrophysical software IP (V4.5). We evaluated parameters of available logs that control the reservoir properties of the formation, including shale volume, effective porosity, and water saturation. Mauddud Formation is divided into five units, which are distinguished by various reservoir characteristics. These units are A, B, C, D, and E. Through analyzing results of the computer processed interpretation (CPI) of available wells, we observed that the main reservoir units are B and D, being distinguished by elevated values of eff
... Show MoreA 3D geological model for Mishrif Reservoir in Nasiriyah oil field had been invented "designed" "built". Twenty Five wells namely have been selected lying in Nasiriyah Governorate in order to build Structural and petrophysical (porosity and water saturation) models represented by a 3D static geological model in three directions .Structural model showed that Nasiriyah oil field represents anticlinal fold its length about 30 km and the width about 10 km, its axis extends toward NW–SE with structural closure about 65 km . After making zones for Mishrif reservoir, which was divided into 5 zones i.e. (MA zone, UmB 1zone,MmB1 zone ,L.mB1 zone and mB2zone) .Layers were built for each zone depending on petrophysical propertie
... Show More