In this paper, we provide some types of - -spaces, namely, - ( )- (respectively, - ( )- , - ( )- and - ( )-) spaces for minimal structure spaces which are denoted by ( -spaces). Some properties and examples are given.
The relationships between a number of types of - -spaces and the other existing types of weaker and stronger forms of -spaces are investigated. Finally, new types of open (respectively, closed) functions of -spaces are introduced and some of their properties are studied.
In this paper, we introduce weak and strong forms of ω-perfect mappings, namely the ï±-ω-perfect, weakly ï±-ω-perfect and stronglyï±-ω-perfect mappings. Also, we investigate the fundamental properties of these mappings. Finally, we focused on studying the relationship between weakly ï±-ω-perfect and stronglyï± -ω-perfect mappings.
The main purpose of this article is to study the soft LC-spaces as soft spaces in which every soft Lindelöf subset of is soft closed. Also, we study the weak forms of soft LC-spaces and we discussed their relationships with soft LC-spaces as well as among themselves.
The weak and strong forms are so called because it is not their lexical content that primary matter, but the role they have in the sentence. The problematic confusion, our students encounter, in recognizing and producing the correct pronunciation of weak and strong forms of the English function words is the main incentive behind conducting this study. In order to gather the data, this paper used two types of tests: a recognition test and a production test. The general results reached through the analysis of the students' answers seem to conform to the researcher's assumption: students face a critical problem in recognizing and producing correct pronunciation of the weak and strong forms of the English funct
... Show MoreIn this paper, we introduce and study new classes of soft open sets in soft bitopological spaces called soft (1,2)*-omega open sets and weak forms of soft (1,2)*-omega open sets such as soft (1,2)*-α-ω-open sets, soft (1,2)*-pre-ω-opensets, soft (1,2)*-b-ω-open sets, and soft (1,2)*-β-ω-open sets. Moreover; some basic properties and the relation among these concepts and other concepts also have been studied.
In this work, we present the notion of sp[γ,γ^(* ) ]-open set, sp[γ,γ^(* ) ]-closed, and sp[γ,γ^(* ) ]-closure such that several properties are obtained. By using this concept, we define a new type of spaces named sp[γ,γ^(* ) ]-compact space.
In this paper, we introduce the concept of generalized strong commutativity (Cocommutativity) preserving right centralizers on a subset of a Γ-ring. And we generalize some results of a classical ring to a gamma ring.
This paper is devoted to introduce weak and strong forms of fibrewise fuzzy ω-topological spaces, namely the fibrewise fuzzy -ω-topological spaces, weakly fibrewise fuzzy -ω-topological spaces and strongly fibrewise fuzzy -ω- topological spaces. Also, Several characterizations and properties of this class are also given as well. Finally, we focused on studying the relationship between weakly fibrewise fuzzy -ω-topological spaces and strongly fibrewise fuzzy -ω-topological spaces.
The main objective of this work is to introduce and investigate fixed point (F. p) theorems for maps that satisfy contractive conditions in weak partial metric spaces (W.P.M.S), and give some new generalization of the fixed point theorems of Mathews and Heckmann. Our results extend, and unify a multitude of (F. p) theorems and generalize some results in (W.P.M.S). An example is given as an illustration of our results.