Authentication is the process of determining whether someone or something is,
in fact, who or what it is declared to be. As the dependence upon computers and
computer networks grows, the need for user authentication has increased. User’s
claimed identity can be verified by one of several methods. One of the most popular
of these methods is represented by (something user know), such as password or
Personal Identification Number (PIN). Biometrics is the science and technology of
authentication by identifying the living individual’s physiological or behavioral
attributes. Keystroke authentication is a new behavioral access control system to
identify legitimate users via their typing behavior. The objective of this paper is to
provide user authentication based on keystroke dynamic in order to avoid un
authorized user access to the system. Naive Bayes Classifier (NBC) is applied for
keystroke authentication using unigraph and diagraph keystroke features. The
unigraph Dwell Time (DT), diagraph Down-Down Time (DDT) features, and
combination of (DT and DDT) are used. The results show that the combination of
features (DT and DDT) produces better results with low error rate as compared
with using DT or DDT alone.
Determining the face of wearing a mask from not wearing a mask from visual data such as video and still, images have been a fascinating research topic in recent decades due to the spread of the Corona pandemic, which has changed the features of the entire world and forced people to wear a mask as a way to prevent the pandemic that has calmed the entire world, and it has played an important role. Intelligent development based on artificial intelligence and computers has a very important role in the issue of safety from the pandemic, as the Topic of face recognition and identifying people who wear the mask or not in the introduction and deep education was the most prominent in this topic. Using deep learning techniques and the YOLO (”You on
... Show MoreSkull image separation is one of the initial procedures used to detect brain abnormalities. In an MRI image of the brain, this process involves distinguishing the tissue that makes up the brain from the tissue that does not make up the brain. Even for experienced radiologists, separating the brain from the skull is a difficult task, and the accuracy of the results can vary quite a little from one individual to the next. Therefore, skull stripping in brain magnetic resonance volume has become increasingly popular due to the requirement for a dependable, accurate, and thorough method for processing brain datasets. Furthermore, skull stripping must be performed accurately for neuroimaging diagnostic systems since neither non-brain tissues nor
... Show MoreIntrusion-detection systems (IDSs) aim at detecting attacks against computer systems and networks or, in general, against information systems. Most of the diseases in human body are discovered through Deoxyribonucleic Acid (DNA) investigations. In this paper, the DNA sequence is utilized for intrusion detection by proposing an approach to detect attacks in network. The proposed approach is a misuse intrusion detection that consists of three stages. First, a DNA sequence for a network traffic taken from Knowledge Discovery and Data mining (KDD Cup 99) is generated. Then, Teiresias algorithm, which is used to detect sequences in human DNA and assist researchers in decoding the human genome, is used to discover the Shortest Tandem Repeat (S
... Show MoreFor businesses that provide delivery services, the efficiency of the delivery process in terms of punctuality is very important. In addition to increasing customer trust, efficient route management, and selection are required to reduce vehicle fuel costs and expedite delivery. Some small and medium businesses still use conventional methods to manage delivery routes. Decisions to manage delivery schedules and routes do not use any specific methods to expedite the delivery settlement process. This process is inefficient, takes a long time, increases costs and is prone to errors. Therefore, the Dijkstra algorithm has been used to improve the delivery management process. A delivery management system was developed to help managers and drivers
... Show MoreIn the last decade, 3D models gained interest in many applications, such as games, the medical field, and manufacture. It is necessary to protect these models from unauthorized copying, distribution, and editing. Digital watermarking is the best way to solve this problem. This paper introduces a robust watermarking method by embedding the watermark in the low-frequency domain, then selecting the coarsest level for embedding the watermark based on the strength factor. The invisibility of the watermark for the proposed algorithm is tested by using different measurements, such as HD and PSNR. The robustness was tested by using different types of attacks; the correlation coefficient was applied for the evaluati
... Show MoreEmotion recognition has important applications in human-computer interaction. Various sources such as facial expressions and speech have been considered for interpreting human emotions. The aim of this paper is to develop an emotion recognition system from facial expressions and speech using a hybrid of machine-learning algorithms in order to enhance the overall performance of human computer communication. For facial emotion recognition, a deep convolutional neural network is used for feature extraction and classification, whereas for speech emotion recognition, the zero-crossing rate, mean, standard deviation and mel frequency cepstral coefficient features are extracted. The extracted features are then fed to a random forest classifier. In
... Show MoreThe investigation of signature validation is crucial to the field of personal authenticity. The biometrics-based system has been developed to support some information security features.Aperson’s signature, an essential biometric trait of a human being, can be used to verify their identification. In this study, a mechanism for automatically verifying signatures has been suggested. The offline properties of handwritten signatures are highlighted in this study which aims to verify the authenticity of handwritten signatures whether they are real or forged using computer-based machine learning techniques. The main goal of developing such systems is to verify people through the validity of their signatures. In this research, images of a group o
... Show More