Authentication is the process of determining whether someone or something is,
in fact, who or what it is declared to be. As the dependence upon computers and
computer networks grows, the need for user authentication has increased. User’s
claimed identity can be verified by one of several methods. One of the most popular
of these methods is represented by (something user know), such as password or
Personal Identification Number (PIN). Biometrics is the science and technology of
authentication by identifying the living individual’s physiological or behavioral
attributes. Keystroke authentication is a new behavioral access control system to
identify legitimate users via their typing behavior. The objective of this paper is to
provide user authentication based on keystroke dynamic in order to avoid un
authorized user access to the system. Naive Bayes Classifier (NBC) is applied for
keystroke authentication using unigraph and diagraph keystroke features. The
unigraph Dwell Time (DT), diagraph Down-Down Time (DDT) features, and
combination of (DT and DDT) are used. The results show that the combination of
features (DT and DDT) produces better results with low error rate as compared
with using DT or DDT alone.
The aim of this paper is to introduce a new type of proper mappings called semi-p-proper mapping by using semi-p-open sets, which is weaker than the proper mapping. Some properties and characterizations of this type of mappings are given.
The main purpose of this paper is to study some results concerning reduced ring with another concepts as semiprime ring ,prime ring,essential ideal ,derivations and homomorphism ,we give some results a bout that.
in this paper the notion of threshold relations by using resemblance relation are introduced to get a similarity relation from a resemnblance relation R
It is shown that if a subset of a topological space (χ, τ) is δ-semi.closed, then it is semi.closed. By use this fact, we introduce the concept regularity of a topological space (χ, τ) via δ-semi.open sets. Many properties and results were investigated and studied. In addition we study some maps that preserve the δ-semi.regularity of spaces.
In a previous work, Ali and Ghawi studied closed Rickart modules. The main purpose of this paper is to define and study the properties of y-closed Rickart modules .We prove that, Let and be two -modules such that is singular. Then is -y-closed Rickart module if and only if Also, we study the direct sum of y-closed Rickart modules.
Let be an R-module, and let be a submodule of . A submodule is called -Small submodule () if for every submodule of such that implies that . In our work we give the definition of -coclosed submodule and -hollow-lifiting modules with many properties.
Let be a commutative ring with unity and let be a non-zero unitary module. In
this work we present a -small projective module concept as a generalization of small
projective. Also we generalize some properties of small epimorphism to δ-small
epimorphism. We also introduce the notation of δ-small hereditary modules and δ-small
projective covers.
Weosay thatotheosubmodules A, B ofoan R-module Moare µ-equivalent , AµB ifoand onlyoif <<µand <<µ. Weoshow thatoµ relationois anoequivalent relationoand hasegood behaviorywith respectyto additionmof submodules, homorphismsr, andydirectusums, weaapplyothese resultsotoointroduced theoclassoof H-µ-supplementedomodules. Weosay thatoa module Mmis H-µ-supplementedomodule ifofor everyosubmodule A of M, thereois a directosummand D ofoM suchothat AµD. Variousoproperties ofothese modulesoarepgiven.