Fuzzy Based Clustering for Grayscale Image Steganalysis
conventional FCM algorithm does not fully utilize the spatial information in the image. In this research, we use a FCM algorithm that incorporates spatial information into the membership function for clustering. The spatial function is the summation of the membership functions in the neighborhood of each pixel under consideration. The advantages of the method are that it is less
sensitive to noise than other techniques, and it yields regions more homogeneous than those of other methods. This technique is a powerful method for noisy image segmentation.
Background: image processing of medical images is major method to increase reliability of cancer diagnosis.
Methods: The proposed system proceeded into two stages: First, enhancement stage which was performed using of median filter to reduce the noise and artifacts that present in a CT image of a human lung with a cancer, Second: implementation of k-means clustering algorithm.
Results: the result image of k-means algorithm compared with the image resulted from implementation of fuzzy c-means (FCM) algorithm.
Conclusion: We found that the time required for k-means algorithm implementation is less than that of FCM algorithm.MATLAB package (version 7.3) was used in writing the programming code of our w
A substantial matter to confidential messages' interchange through the internet is transmission of information safely. For example, digital products' consumers and producers are keen for knowing those products are genuine and must be distinguished from worthless products. Encryption's science can be defined as the technique to embed the data in an images file, audio or videos in a style which should be met the safety requirements. Steganography is a portion of data concealment science that aiming to be reached a coveted security scale in the interchange of private not clear commercial and military data. This research offers a novel technique for steganography based on hiding data inside the clusters that resulted from fuzzy clustering. T
... Show MoreThe influx of data in bioinformatics is primarily in the form of DNA, RNA, and protein sequences. This condition places a significant burden on scientists and computers. Some genomics studies depend on clustering techniques to group similarly expressed genes into one cluster. Clustering is a type of unsupervised learning that can be used to divide unknown cluster data into clusters. The k-means and fuzzy c-means (FCM) algorithms are examples of algorithms that can be used for clustering. Consequently, clustering is a common approach that divides an input space into several homogeneous zones; it can be achieved using a variety of algorithms. This study used three models to cluster a brain tumor dataset. The first model uses FCM, whic
... Show MoreA new method presented in this work to detect the existence of hidden
data as a secret message in images. This method must be applyied only on images which have the same visible properties (similar in perspective) where the human eyes cannot detect the difference between them.
This method is based on Image Quality Metrics (Structural Contents
Metric), which means the comparison between the original images and stego images, and determines the size ofthe hidden data. We applied the method to four different images, we detect by this method the hidden data and find exactly the same size of the hidden data.
Clustering algorithms have recently gained attention in the related literature since
they can help current intrusion detection systems in several aspects. This paper
proposes genetic algorithm (GA) based clustering, serving to distinguish patterns
incoming from network traffic packets into normal and attack. Two GA based
clustering models for solving intrusion detection problem are introduced. The first
model coined as handles numeric features of the network packet, whereas
the second one coined as concerns all features of the network packet.
Moreover, a new mutation operator directed for binary and symbolic features is
proposed. The basic concept of proposed mutation operator depends on the most
frequent value
Many fuzzy clustering are based on within-cluster scatter with a compactness measure , but in this paper explaining new fuzzy clustering method which depend on within-cluster scatter with a compactness measure and between-cluster scatter with a separation measure called the fuzzy compactness and separation (FCS). The fuzzy linear discriminant analysis (FLDA) based on within-cluster scatter matrix and between-cluster scatter matrix . Then two fuzzy scattering matrices in the objective function assure the compactness between data elements and cluster centers .To test the optimal number of clusters using validation clustering method is discuss .After that an illustrate example are applied.
Advances in digital technology and the World Wide Web has led to the increase of digital documents that are used for various purposes such as publishing and digital library. This phenomenon raises awareness for the requirement of effective techniques that can help during the search and retrieval of text. One of the most needed tasks is clustering, which categorizes documents automatically into meaningful groups. Clustering is an important task in data mining and machine learning. The accuracy of clustering depends tightly on the selection of the text representation method. Traditional methods of text representation model documents as bags of words using term-frequency index document frequency (TFIDF). This method ignores the relationship an
... Show More