Steganography involves concealing information by embedding data within cover media and it can be categorized into two main domains: spatial and frequency. This paper presents two distinct methods. The first is operating in the spatial domain which utilizes the least significant bits (LSBs) to conceal a secret message. The second method is the functioning in the frequency domain which hides the secret message within the LSBs of the middle-frequency band of the discrete cosine transform (DCT) coefficients. These methods enhance obfuscation by utilizing two layers of randomness: random pixel embedding and random bit embedding within each pixel. Unlike other available methods that embed data in sequential order with a fixed amount. These methods embed the data in a random location with a random amount, further enhancing the level of obfuscation. A pseudo-random binary key that is generated through a nonlinear combination of eight Linear Feedback Shift Registers (LFSRs) controls this randomness. The experimentation involves various 512x512 cover images. The first method achieves an average PSNR of 43.5292 with a payload capacity of up to 16% of the cover image. In contrast, the second method yields an average PSNR of 38.4092 with a payload capacity of up to 8%. The performance analysis demonstrates that the LSB-based method can conceal more data with less visibility, however, it is vulnerable to simple image manipulation. On the other hand, the DCT-based method offers lower capacity with increased visibility, but it is more robust.
Secure information transmission over the internet is becoming an important requirement in data communication. These days, authenticity, secrecy, and confidentiality are the most important concerns in securing data communication. For that reason, information hiding methods are used, such as Cryptography, Steganography and Watermarking methods, to secure data transmission, where cryptography method is used to encrypt the information in an unreadable form. At the same time, steganography covers the information within images, audio or video. Finally, watermarking is used to protect information from intruders. This paper proposed a new cryptography method by using thre
... Show MoreThe pilgrimage takes place in several countries around the world. The pilgrimage includes the simultaneous movement of a huge crowd of pilgrims which leads to many challenges for the pilgrimage authorities to track, monitor, and manage the crowd to minimize the chance of overcrowding’s accidents. Therefore, there is a need for an efficient monitoring and tracking system for pilgrims. This paper proposes powerful pilgrims tracking and monitoring system based on three Internet of Things (IoT) technologies; namely: Radio Frequency Identification (RFID), ZigBee, and Internet Protocol version 6 (IPv6). In addition, it requires low-cost, low-power-consumption implementation. The proposed
A frequently used approach for denoising is the shrinkage of coefficients of the noisy signal representation in a transform domain. This paper proposes an algorithm based on hybrid transform (stationary wavelet transform proceeding by slantlet transform); The slantlet transform is applied to the approximation subband of the stationary wavelet transform. BlockShrink thresholding technique is applied to the hybrid transform coefficients. This technique can decide the optimal block size and thresholding for every wavelet subband by risk estimate (SURE). The proposed algorithm was executed by using MATLAB R2010aminimizing Stein’s unbiased with natural images contaminated by white Gaussian noise. Numerical results show that our algorithm co
... Show MoreAlgorithms for Arabic stemming available in two main types which are root-based approach and stem-based approach. Both types have problems which have been solved in the proposed stemmer which combined rules of both main types and based on Arabic patterns (Tafealat1) to find the added letters. The proposed stemmer achieved root exploration ratio (99.08) and fault ratio (0.9).
Classification of network traffic is an important topic for network management, traffic routing, safe traffic discrimination, and better service delivery. Traffic examination is the entire process of examining traffic data, from intercepting traffic data to discovering patterns, relationships, misconfigurations, and anomalies in a network. Between them, traffic classification is a sub-domain of this field, the purpose of which is to classify network traffic into predefined classes such as usual or abnormal traffic and application type. Most Internet applications encrypt data during traffic, and classifying encrypted data during traffic is not possible with traditional methods. Statistical and intelligence methods can find and model traff
... Show MoreTelevision white spaces (TVWSs) refer to the unused part of the spectrum under the very high frequency (VHF) and ultra-high frequency (UHF) bands. TVWS are frequencies under licenced primary users (PUs) that are not being used and are available for secondary users (SUs). There are several ways of implementing TVWS in communications, one of which is the use of TVWS database (TVWSDB). The primary purpose of TVWSDB is to protect PUs from interference with SUs. There are several geolocation databases available for this purpose. However, it is unclear if those databases have the prediction feature that gives TVWSDB the capability of decreasing the number of inquiries from SUs. With this in mind, the authors present a reinforcement learning-ba
... Show MoreSkull image separation is one of the initial procedures used to detect brain abnormalities. In an MRI image of the brain, this process involves distinguishing the tissue that makes up the brain from the tissue that does not make up the brain. Even for experienced radiologists, separating the brain from the skull is a difficult task, and the accuracy of the results can vary quite a little from one individual to the next. Therefore, skull stripping in brain magnetic resonance volume has become increasingly popular due to the requirement for a dependable, accurate, and thorough method for processing brain datasets. Furthermore, skull stripping must be performed accurately for neuroimaging diagnostic systems since neither non-brain tissues nor
... Show More