Cadmium oxide (CdO) thin films were deposited using the sequencing ion layer adsorption and reaction (SILAR) method. In this study, the effect of the pH value of an aqueous solution of cadmium acetate at a concentration of 0.2 mol of the cadmium oxide film was determined. The solution source for the cadmium oxide film was cadmium ions and an aqueous ammonia solution. The CdO films were deposited on glass substrates at a temperature of 90 ℃. The cadmium oxide film thickness was determined by the weight difference method at pH values (7.2, 8.2). X-ray diffraction (XRD) and scanning electron microscopy (SEM) showed that the size of the crystals increased with the increase in the solution (pH). While the UV-visible spectra of the films revealed that the optical band gap energy decreases with increasing (pH) of the CdO solution. The absorbance spectrum of the cadmium oxide film was recorded in the wavelength range (300 – 900) nm. The change in the pH of the cadmium acetate aqueous solution from the energy gap and X-ray diffraction calculations showed that the film had an optical band gap energy and that the highest intensity was at (111) and that the membrane is n-type, as shown by studies to prepare the cadmium oxide membrane using the SILAR method.