For several applications, it is very important to have an edge detection technique matching human visual contour perception and less sensitive to noise. The edge detection algorithm describes in this paper based on the results obtained by Maximum a posteriori (MAP) and Maximum Entropy (ME) deblurring algorithms. The technique makes a trade-off between sharpening and smoothing the noisy image. One of the advantages of the described algorithm is less sensitive to noise than that given by Marr and Geuen techniques that considered to be the best edge detection algorithms in terms of matching human visual contour perception.
<span>Dust is a common cause of health risks and also a cause of climate change, one of the most threatening problems to humans. In the recent decade, climate change in Iraq, typified by increased droughts and deserts, has generated numerous environmental issues. This study forecasts dust in five central Iraqi districts using machine learning and five regression algorithm supervised learning system framework. It was assessed using an Iraqi meteorological organization and seismology (IMOS) dataset. Simulation results show that the gradient boosting regressor (GBR) has a mean square error of 8.345 and a total accuracy ratio of 91.65%. Moreover, the results show that the decision tree (DT), where the mean square error is 8.965, c
... Show MoreAbstract
This research deals will the declared production planning operation in the general company of planting oils, which have great role in production operations management who had built mathematical model for correct non-linear programming according to discounting operation during raw materials or half-made materials purchasing operation which concentration of six main products by company but discount included just three products of raw materials, and there were six months taken from the 1st half of 2014 as a planning period has been chosen . Simulated annealing algorithm application on non-linear model which been more difficulty than possible solution when imposed restric
... Show MoreAn application of neural network technique was introduced in modeling the point efficiency of sieve tray, based on a
data bank of around 33l data points collected from the open literature.Two models proposed,using back-propagation
algorithm, the first model network consists: volumetric liquid flow rate (QL), F foctor for gas (FS), liquid density (pL),
gas density (pg), liquid viscosity (pL), gas viscosity (pg), hole diameter (dH), weir height (hw), pressure (P) and surface
tension between liquid phase and gas phase (o). In the second network, there are six parameters as dimensionless
group: Flowfactor (F), Reynolds number for liquid (ReL), Reynolds number for gas through hole (Reg), ratio of weir
height to hole diqmeter
This work is divided into two parts first part study electronic structure and vibration properties of the Iobenguane material that is used in CT scan imaging. Iobenguane, or MIBG, is an aralkylguanidine analog of the adrenergic neurotransmitter norepinephrine and a radiopharmaceutical. It acts as a blocking agent for adrenergic neurons. When radiolabeled, it can be used in nuclear medicinal diagnostic techniques as well as in neuroendocrine antineoplastic treatments. The aim of this work is to provide general information about Iobenguane that can be used to obtain results to diagnose the diseases. The second part study image processing techniques, the CT scan image is transformed to frequency domain using the LWT. Two methods of contrast
... Show MoreUniversal image stego-analytic has become an important issue due to the natural images features curse of dimensionality. Deep neural networks, especially deep convolution networks, have been widely used for the problem of universal image stegoanalytic design. This paper describes the effect of selecting suitable value for number of levels during image pre-processing with Dual Tree Complex Wavelet Transform. This value may significantly affect the detection accuracy which is obtained to evaluate the performance of the proposed system. The proposed system is evaluated using three content-adaptive methods, named Highly Undetetable steGO (HUGO), Wavelet Obtained Weights (WOW) and UNIversal WAvelet Relative Distortion (UNIWARD).
The obtain
Remote sensing and GIS applications (Geoinformatics tools) involve a wide range of techniques for providing a solution for future water resources management and offer an excellent means to improve knowledge of sustainable planning. Al-Razzaza is the second largest lake in Iraq; it is a common source of fishery fortune and floodwater reservoir in southwestern Iraq. In recent years, the lake faced a noticeable amount of desiccation, which is considered a threat to the biodiversity and wildlife of the lake. The study aimed to detect the Lake's spatiotemporal changes from 1988 to 2018. Multi satellite-derived indices were investigated for the extracting of the lake water body. Results showed that the lake volume decrea
... Show MoreThe presence of natural voids and fractures (weak zones) in subsurface gypsiferous soil and gypsum, within the University of Al-Anbar, western Iraq. It causes a harsher problem for civil engineering projects. Electrical resistivity technique is applied as an economic decipher for investigation underground weak zones. The inverse models of the Dipole-dipole and Pole-dipole arrays with aspacing of 2 m and an n-factor of 6 clearly show that the resistivity contrast between the anomalous part of the weak zone and the background. The maximum thickness and shape are well defined from 2D imaging with Dipole-dipole array, the maximum thickness ranges between 9.5 to 11.5 m. It is concluded that the 2D imaging survey is a useful technique and more
... Show MoreIn this research, we propose to use two local search methods (LSM's); Particle Swarm Optimization (PSO) and the Bees Algorithm (BA) to solve Multi-Criteria Travelling Salesman Problem (MCTSP) to obtain the best efficient solutions. The generating process of the population of the proposed LSM's may be randomly obtained or by adding some initial solutions obtained from some efficient heuristic methods. The obtained solutions of the PSO and BA are compared with the solutions of the exact methods (complete enumeration and branch and bound methods) and some heuristic methods. The results proved the efficiency of PSO and BA methods for a large number of nodes ( ). The proposed LSM's give the best efficient solutions for the MCTSP for
... Show MoreThe combination of wavelet theory and neural networks has lead to the development of wavelet networks. Wavelet networks are feed-forward neural networks using wavelets as activation function. Wavelets networks have been used in classification and identification problems with some success.
In this work we proposed a fuzzy wavenet network (FWN), which learns by common back-propagation algorithm to classify medical images. The library of medical image has been analyzed, first. Second, Two experimental tables’ rules provide an excellent opportunity to test the ability of fuzzy wavenet network due to the high level of information variability often experienced with this type of images.
&n
... Show MoreA principal problem of any internet user is the increasing number of spam, which became a great problem today. Therefore, spam filtering has become a research fo-cus that attracts the attention of several security researchers and practitioners. Spam filtering can be viewed as a two-class classification problem. To this end, this paper proposes a spam filtering approach based on Possibilistic c-Means (PCM) algorithm and weighted distance coined as (WFCM) that can efficiently distinguish between spam and legitimate email messages. The objective of the formulated fuzzy problem is to construct two fuzzy clusters: spam and email clusters. The weight assignment is set by information gain algorithm. Experimental results on spam based benchmark
... Show More