Collective C2 transitions in 32S are discussed for higher
energy configurations by comparing the calculations of transition
strength B(CJ )with the experimental data. These configurations
are taken into account through a microscopic theory including
excitations from the core orbits and the model space orbits with nħω
excitations.
Excitations up to n=10 are considered. However n=6 seems to
be large enough for a sufficient convergence. The calculations
include the lowest seven 2+0 states of 32S.
The capacity factor is the main factor in assessing the efficiency of wind Turbine. This paper presents a procedure to find the optimal wind turbine for five different locations in Iraq based on finding the highest capacity factor of wind turbine for different locations. The wind data for twelve successive years (2009-2020) of five locations in Iraq are collected and analyzed. The longitudes and latitudes of the candidate sites are (44.3661o E, 33.3152o N), (47.7738o E, 30.5258o N), (45.8160o E, 32.5165o N), (44.33265o E, 32.0107o N) and (46.25691o E, 31.0510o N) for Baghdad, Basrah, Al-Kut, Al-Najaf, and Al-Nasiriyah respectively. The average wind velocity, standard deviation, Weibull shape and scale factors, and probability density functi
... Show MoreThe manifestations of climate change are increasing with the days: sudden rains and floods, lakes that evaporate, rivers that experience unprecedentedly low water levels, and successive droughts such as the Tigris, Euphrates, Rhine, and Lape rivers. At the same time, energy consumption is increasing, and there is no way to stop the warming of the Earth's atmosphere despite the many conferences and growing interest in environmental problems. An aspect that has not received sufficient attention is the tremendous heat produced by human activities. This work links four elements in the built environment that are known for their high energy consumption (houses, supermarkets, greenhouses, and asphalt roads) according t
... Show MoreWind energy is one of the most common and natural resources that play a huge role in energy sector, and due to the increasing demand to improve the efficiency of wind turbines and the development of the energy field, improvements have been made to design a suitable wind turbine and obtain the most energy efficiency possible from wind. In this paper, a horizontal wind turbine blade operating under low wind speed was designed using the (BEM) theory, where the design of the turbine rotor blade is a difficult task due to the calculations involved in the design process. To understand the behavior of the turbine blade, the QBlade program was used to design and simulate the turbine rotor blade during working conditions. The design variables suc
... Show MoreThe wind atlas analysis and application program, WAsP, is used to assess wind
energy potential، wind climate from geostrophic winds of a given area. In this paper,
metrological data from Ali Algharby station was used to predict the wind resource
and wind turbine energy production at Ali Algharby site.
Data from metrological station was used to draw up observed wind climates at the
anemometer site. Site contour map was digitized using WAsP Map Editortool.
Observed wind climate, digitized contour map, terrain roughness length, obstacle
groups and their porosity were used as input to the WAsP model. Vestas V182, 1.65
MW turbine was used. Weibull probability distribution graph of wind speed, power
density were dra
<span>As a result of numerous applications and low installation costs, wireless sensor networks (WSNs) have expanded excessively. The main concern in the WSN environment is to lower energy consumption amidst nodes while preserving an acceptable level of service quality. Using multi-mobile sinks to reduce the nodes' energy consumption have been considered as an efficient strategy. In such networks, the dynamic network topology created by the sinks mobility makes it a challenging task to deliver the data to the sinks. Thus, in order to provide efficient data dissemination, the sensor nodes will have to readjust the routes to the current position of the mobile sinks. The route re-adjustment process could result in a significant m
... Show MoreAn analytical expression for the charge density distributions is derived based on the use of occupation numbers of the states and the single particle wave functions of the harmonic oscillator potential with size parameters chosen to reproduce the observed root mean square charge radii for all considered nuclei. The derived expression, which is applicable throughout the whole region of shell nuclei, has been employed in the calculations concerning the charge density distributions for odd- of shell nuclei, such as and nuclei. It is found that introducing an additional parameters, namely and which reflect the difference of the occupation numbers of the states from the prediction of the simple shell model leads to obtain a remarkabl
... Show MoreThe various properties of the ground and excited electronic states of coumarins 102 using density functional theory (DFT) and time-dependent density functional theory (TDDFT) was calculated by the B3LYP density functional model with 6-31G(d,p) basis set by Gaussian 09 W program. Spectral characteristics of coumarin102 have been probed into by methods of experimental UV-visible, and quantum chemistry. The UV spectrum was measured in methanol. The optimized structures, total energies, electronic states (HOMO- LUMO), energy gap, ionization potentials, electron affinities, chemical potential, global hardness, softness, global electrophilictity, and dipole moment were measured. We find good agreement between experimental data of UV spectrum and
... Show MoreThe rotational model symmetry is a strong feature of 1d shell nuclei, where symmetry breaking spin-orbital force is rather weak. The binding energies and low-lying energy spectra of Mg (A=20,22,28 and 30) even-even isotopes have been calculated. The interaction used contains the monopole-monopole, quadrupole-quadrupole and isospin dependent terms. Interaction parameters are fixed so as to reproduce the binding of 8 nucleons in N=8 orbit for Z=12 isotope.
The transmitting and receiving of data consume the most resources in Wireless Sensor Networks (WSNs). The energy supplied by the battery is the most important resource impacting WSN's lifespan in the sensor node. Therefore, because sensor nodes run from their limited battery, energy-saving is necessary. Data aggregation can be defined as a procedure applied for the elimination of redundant transmissions, and it provides fused information to the base stations, which in turn improves the energy effectiveness and increases the lifespan of energy-constrained WSNs. In this paper, a Perceptually Important Points Based Data Aggregation (PIP-DA) method for Wireless Sensor Networks is suggested to reduce redundant data before sending them to the
... Show More