Structure of unstable 21,23,25,26F nuclei have been investigated
using Hartree – Fock (HF) and shell model calculations. The ground
state proton, neutron and matter density distributions, root mean
square (rms) radii and neutron skin thickness of these isotopes are
studied. Shell model calculations are performed using SDBA
interaction. In HF method the selected effective nuclear interactions,
namely the Skyrme parameterizations SLy4, Skeσ, SkBsk9 and
Skxs25 are used. Also, the elastic electron scattering form factors of
these isotopes are studied. The calculated form factors in HF
calculations show many diffraction minima in contrary to shell
model, which predicts less diffraction minima. The long tail
behaviour in nuclear density is noticeable seen in HF more than shell
model calculations. The deviation occurs between shell model and
HF results are attributed to the sensitivity of charge form factors to
the change of the tail part of the charge density. Calculations done
for the rms radii in shell model showed excellent agreement with
experimental values, while HF results showed an overestimation in
the calculated rms radii for 21,23F and good agreement for 25,26F. In
general, it is found that the shell model and HF results have the same
behaviour when the mass number (A) increase.
This paper aims to study the quaternary classical continuous optimal control problem consisting of the quaternary nonlinear parabolic boundary value problem, the cost function, and the equality and inequality constraints on the state and the control. Under appropriate hypotheses, it is demonstrated that the quaternary classical continuous optimal control ruling by the quaternary nonlinear parabolic boundary value problem has a quaternary classical continuous optimal control vector that satisfies the equality constraint and inequality state and control constraint. Moreover, mathematical formulation of the quaternary adjoint equations related to the quaternary state equations is discovered, and then the weak form of the quaternary adjoint
... Show MoreIn this paper we will investigate some Heuristic methods to solve travelling salesman problem. The discussed methods are Minimizing Distance Method (MDM), Branch and Bound Method (BABM), Tree Type Heuristic Method (TTHM) and Greedy Method (GRM).
The weak points of MDM are manipulated in this paper. The Improved MDM (IMDM) gives better results than classical MDM, and other discussed methods, while the GRM gives best time for 5≤ n ≤500, where n is the number of visited cities.
The focus of this research lies in the definition of an important aspect of financial development, which is reflected on the alleviation of poverty in Iraq, namely financial inclusion and then taking the path of achieving a sustainable economy, certainly after reviewing one of the important international experiences in this regard and finally measuring the level of financial inclusion in Iraq and its impact on poverty reduction through the absolute poverty line indicator.
Let R be a commutative ring with identity and let M be a unitary left R-module. The purpose of this paper is to investigate some new results (up to our knowledge) on the concept of semi-essential submodules which introduced by Ali S. Mijbass and Nada K. Abdullah, and we make simple changes to the definition relate with the zero submodule, so we say that a submodule N of an R-module M is called semi-essential, if whenever N ∩ P = (0), then P = (0) for each prime submodule P of M. Various properties of semi-essential submodules are considered.
Background: Endometrial cancer is the most common gynecologic malignancy in the United States and the fourth most common cancer in women, comprising 6% of female cancers.
Objectives: The aim of this study is to investigate the antioxidant vitamins, Coenzyme Q10 and oxidative stress in patients with endometrial cancer.
Patients and methods: Fifty six endometrial cancer women patients with various clinical stages (stage 1A, stage1B, stage II, stage III, stage IV) mean aged 58.055 ± 10.561 years, and 30 healthy women volunteers mean aged 39.731 ± 13.504 years, were includes as control group.
Results: The results in this study revealed a highly significant decreased (P<0.01) in β- carotene, Vitamin E and significant increased
Gangyong Lee, S.Tariq Rizvi, and Cosmin S.Roman studied Rickart modules.
The main purpose of this paper is to develop the properties of Rickart modules .
We prove that each injective and prime module is a Rickart module. And we give characterizations of some kind of rings in term of Rickart modules.
The searching process using a binary codebook of combined Block Truncation Coding (BTC) method and Vector Quantization (VQ), i.e. a full codebook search for each input image vector to find the best matched code word in the codebook, requires a long time. Therefore, in this paper, after designing a small binary codebook, we adopted a new method by rotating each binary code word in this codebook into 900 to 2700 step 900 directions. Then, we systematized each code word depending on its angle to involve four types of binary code books (i.e. Pour when , Flat when , Vertical when, or Zigzag). The proposed scheme was used for decreasing the time of the coding pro
... Show MoreThe concept of a 2-Absorbing submodule is considered as an essential feature in the field of module theory and has many generalizations. This articale discusses the concept of the Extend Nearly Pseudo Quasi-2-Absorbing submodules and their relationship to the 2-Absorbing submodule, Quasi-2-Absorbing submodule, Nearly-2-Absorbing submodule, Pseudo-2-Absorbing submodule, and the rest of the other concepts previously studied. The relationship between them has been studied, explaining that the opposite is not true and that under certain conditions the opposite becomes true. This article aims to study this concept and gives the most important propositions, characterizations, remarks, examples, lemmas, and observations related to it. In the en
... Show MoreIn this paper, the classical continuous triple optimal control problem (CCTOCP) for the triple nonlinear parabolic boundary value problem (TNLPBVP) with state vector constraints (SVCs) is studied. The solvability theorem for the classical continuous triple optimal control vector CCTOCV with the SVCs is stated and proved. This is done under suitable conditions. The mathematical formulation of the adjoint triple boundary value problem (ATHBVP) associated with TNLPBVP is discovered. The Fréchet derivative of the Hamiltonian" is derived. Under suitable conditions, theorems of necessary and sufficient conditions for the optimality of the TNLPBVP with the SVCs are stated and proved.
Throughout this paper R represents a commutative ring with identity and all R-modules M are unitary left R-modules. In this work we introduce the notion of S-maximal submodules as a generalization of the class of maximal submodules, where a proper submodule N of an R-module M is called S-maximal, if whenever W is a semi essential submodule of M with N ? W ? M, implies that W = M. Various properties of an S-maximal submodule are considered, and we investigate some relationships between S-maximal submodules and some others related concepts such as almost maximal submodules and semimaximal submodules. Also, we study the behavior of S-maximal submodules in the class of multiplication modules. Farther more we give S-Jacobson radical of ri
... Show More