Preferred Language
Articles
/
ijp-162
Porous silicon prepared by photo electrochemical etching assisted by laser
...Show More Authors

Porous silicon (PS) layers are prepared by anodization for
different etching current densities. The samples are then
characterized the nanocrystalline porous silicon layer by X-Ray
Diffraction (XRD), Atomic Force Microscopy (AFM), Fourier
Transform Infrared (FTIR). PS layers were formed on n-type Si
wafer. Anodized electrically with a 20, 30, 40, 50 and 60 mA/cm2
current density for fixed 10 min etching times. XRD confirms the
formation of porous silicon, the crystal size is reduced toward
nanometric scale of the face centered cubic structure, and peak
becomes a broader with increasing the current density. The AFM
investigation shows the sponge like structure of PS at the lower
current density porous begin to form on the crystalline silicon, when
the current density increases, pores with maximum diameter are
formed as observed all over the surface. FTIR spectroscopy shows a
high density of silicon bonds, it is very sensitive to the surrounding
ambient air, and it is possible to oxidation spontaneously.

Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Sun Jan 20 2019
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Novel Co-Precipitation method for synthesis of Nanostructured Nickel Oxide in accordance to PH: Structural and Optical Properties as an Active optical filter
...Show More Authors

      Low cost Co-Precipitation  method was used for Preparation of novel nickel oxide (NiO) nano particle thin films with Simple, with two different PH values 6, 12 and its effect on structural and optical properties as an active optical filter. Experimental results of structural properties X-ray diffraction (XRD) showed that both Nickel oxide nanoparticles with (PH=6 and 12) have polycrystalline structure smaller average particle size about 8.5 nm for PH=6 in comparison with PH=12. Morphological studies using Scanning electron microscopy (SEM) and  atomic force microscope (AFM)  show uniform nano rod distribution for PH=6 with smaller average diameter, average roughness as compared with NiO with

... Show More
View Publication Preview PDF
Crossref (4)
Crossref
Publication Date
Fri Mar 01 2019
Journal Name
Applied Acoustics
Theoretical model of absorption coefficient of an inhomogeneous MPP absorber with multi-cavity depths
...Show More Authors

View Publication
Scopus (72)
Crossref (62)
Scopus Clarivate Crossref