Water quality sensors have recently received a lot of attention due to their impact on human health. Due to their distinct features, environmental sensors are based on carbon quantum dots (CQDs). In this study, CQDs were prepared using the electro-chemical method, where the structural and optical properties were studied. These quantum dots were used in the environmental sensor application after mixing them with three different materials: CQDs, Alq3 polymer and CQDs and Alq3 solutions using two different methods: drop casting and spin coating, and depositing them on silicon. The sensitivity of the water pollutants was studied for each case of the prepared samples after measuring the change in resistance of the samples at a temperature of 30 oC. Through the results, it was found that the highest sensitivity of sample 3 to the carbon continuous dot was in the case of the contaminant fructose and was 99.55%, while the highest sensitivity of sample 4 was for the one sensitive to the contaminant (mercury chloride) and was 81. As for sample 1, the highest sensitivity was in the case of detecting the contaminant lead chloride and was 80. The results showed that the best sensor was obtained using a spin-coating technique when the solution sample of CQDs+Alq3 was placed on a silicon slide in fructose and the sensitivity was 200%. This demonstrates the importance of quantum dots in measuring the sensitivity of water pollutants. The thin film thickness was measured to be 500 nm.
The aim of this paper is to propose an efficient three steps iterative method for finding the zeros of the nonlinear equation f(x)=0 . Starting with a suitably chosen , the method generates a sequence of iterates converging to the root. The convergence analysis is proved to establish its five order of convergence. Several examples are given to illustrate the efficiency of the proposed new method and its comparison with other methods.
In this research, a mathematical model of tumor treatment by radiotherapy is studied and a new modification for the model is proposed as well as introducing the check for the suggested modification. Also the stability of the modified model is analyzed in the last section.
The aim of this paper is to estimate the concentrations of some heavy metals in Mohammed AL-Qassim Highway in Baghdad city for different distances by using the polynomial interpolation method for functions passing from the data, which is proposed by using the MATLAB software. The sample soil in this paper was taken from the surface layer (0-25 cm depth) at the two sides of the road with four distances (1.5, 10, 25 and 60 m) in each side of the road. Using this method, we can find the concentrations of heavy metals in the soil at any depth and time without using the laboratory, so this method reduces the time, effort and costs of conducting laboratory analyzes.
The researcher [1-10] proposed a method for computing the numerical solution to quasi-linear parabolic p.d.e.s using a Chebyshev method. The purpose of this paper is to extend the method to problems with mixed boundary conditions. An error analysis for the linear problem is given and a global element Chebyshev method is described. A comparison of various chebyshev methods is made by applying them to two-point eigenproblems. It is shown by analysis and numerical examples that the approach used to derive the generalized Chebyshev method is comparable, in terms of the accuracy obtained, with existing Chebyshev methods.
In this paper, we applied the concept of the error analysis using the linearization method and new condition numbers constituting optimal bounds in appraisals of the possible errors. Evaluations of finite continued fractions, computations of determinates of tridiagonal systems, of determinates of second order and a "fast" complex multiplication. As in Horner's scheme, present rounding error analysis of product and summation algorithms. The error estimates are tested by numerical examples. The executed program for calculation is "MATLAB 7" from the website "Mathworks.com
In this article, the backstepping control scheme is proposed to stabilize the fractional order Riccati matrix differential equation with retarded arguments in which the fractional derivative is presented using Caputo's definition of fractional derivative. The results are established using Mittag-Leffler stability. The fractional Lyapunov function is defined at each stage and the negativity of an overall fractional Lyapunov function is ensured by the proper selection of the control law. Numerical simulation has been used to demonstrate the effectiveness of the proposed control scheme for stabilizing such type of Riccati matrix differential equations.
In this article, performing and deriving te probability density function for Rayleigh distribution is done by using ordinary least squares estimator method and Rank set estimator method. Then creating interval for scale parameter of Rayleigh distribution. Anew method using is used for fuzzy scale parameter. After that creating the survival and hazard functions for two ranking functions are conducted to show which one is beast.
This paper examines the finding of spacewise dependent heat source function in pseudoparabolic equation with initial and homogeneous Dirichlet boundary conditions, as well as the final time value / integral specification as additional conditions that ensure the uniqueness solvability of the inverse problem. However, the problem remains ill-posed because tiny perturbations in input data cause huge errors in outputs. Thus, we employ Tikhonov’s regularization method to restore this instability. In order to choose the best regularization parameter, we employ L-curve method. On the other hand, the direct (forward) problem is solved by a finite difference scheme while the inverse one is reformulated as an optimization problem. The
... Show MoreNanofluids, liquid suspensions of nanoparticles (Np), are an effective agent to alter the wettability of oil-wet reservoirs to water-wet thus promoting hydrocarbon recovery. It can also have an application to more efficient carbon storage. We present a series of contact angle (θ) investigations on initially oil-wet calcite surfaces to quantify the performance of hydrophilic silica nanoparticles for wettability alteration. These tests are conducted at typical in-situ high pressure (CO2), temperature and salinity conditions. A high pressure–temperature (P/T) optical cell with a regulated tilted surface was used to measure the advancing and receding contact angles at the desired conditions. The results showed that silica nanofluids can alte
... Show MoreSurvival analysis is one of the types of data analysis that describes the time period until the occurrence of an event of interest such as death or other events of importance in determining what will happen to the phenomenon studied. There may be more than one endpoint for the event, in which case it is called Competing risks. The purpose of this research is to apply the dynamic approach in the analysis of discrete survival time in order to estimate the effect of covariates over time, as well as modeling the nonlinear relationship between the covariates and the discrete hazard function through the use of the multinomial logistic model and the multivariate Cox model. For the purpose of conducting the estimation process for both the discrete
... Show More