The present work reports a direct experimental comparison of the catalytic hydrodesulfurization of
thiophene over Co-Mo/Al2O3 in fixed- and fluidized-bed reactors under the same conditions. An
experimental pilot plant scale was constructed in the laboratories of chemical engineering department,
Baghdad University; fixed-bed unit (2.54 cm diameter, and 60cm length) and fluidized-bed unit (diameter of 2.54 cm and 40 cm long with a separation zone of 30 cm long and 12.7 cm diameter). The affecting
variables studied in the two systems were reaction temperature of (308 – 460) oC, Liquid hourly space
velocity of (2 – 5) hr-1, and catalyst particle size of (0.075-0.5) mm. It was found in both operations that the
conversion
This study investigates the improvement of Iraqi atmospheric gas oil characteristics which contains 1.402 wt. % sulfur content and 16.88 wt. % aromatic content supplied from Al-Dura Refinery by using hydrodesulfurization (HDS) process using Ti-Ni-Mo/γ-Al2O3 prepared catalyst in order to achieve low sulfur and aromatic saturation gas oil. Hydrodearomatization (HDA) occurs simultaneously with hydrodesulfurization (HDS) process. The effect of titanium on the conventional catalyst Ni-Mo/γ-Al2O3 was investigated by physical adsorption and catalytic activity test. Ti-Ni-Mo/γ-Al2O3 catalyst was prepared under vacuum impregnation condition to ensure efficient precipitation of metals within the carrier γ-Al2O3. The loading percentage of met
... Show MoreThis study investigates the improvement of Iraqi atmospheric gas oil characteristics which contains 1.402 wt. % sulfur content and 16.88 wt. % aromatic content supplied from Al-Dura Refinery by using hydrodesulfurization (HDS) process using Ti-Ni-Mo/γ-Al2O3 prepared catalyst in order to achieve low sulfur and aromatic saturation gas oil. Hydrodearomatization (HDA) occurs simultaneously with hydrodesulfurization (HDS) process. The effect of titanium on the conventional catalyst Ni-Mo/γ-Al2O3 was investigated by physical adsorption and catalytic activity test.Ti-Ni-Mo/γ-Al2O3 catalyst was prepared under vacuum impregnation condition to ensure efficient pr
... Show MoreCatalytic removal of the S-content from thiophene is a central step in efforts aiming to reduce the environmental burdens of transportation fuels. In this contribution, we investigate the hydrodesulfurization (HDS) mechanisms of thiophene (C4H4S) over γ-Mo2N catalyst by means of density functional theory (DFT) calculations. The thiophene molecule preferentially adsorbs in a flat mode over 3-fold fcc nitrogen hollow sites. The HDS mechanism may potentially proceed either unimolecularly (direct desulfurization) or via H-assisted reactions (hydrogenation). Due to a sizable activation barrier required for the first Csingle bondS bond scission of 54.6 kcal/mol, we predict that the direct desulfurization to contribute rather very insignificant
... Show MoreNano γ-Al2O3 support was prepared by co-precipitation method by using different calcination temperatures (550, 600, and 750) oC. Then nano NiMo/γ-Al2O3 catalyst was prepared by impregnation method were nickel carbonate (source of Ni) and ammonium paramolybdate (source of Mo) on the best prepared nano γ-Al2O3 support at calcination temperature 550 oC. Make the characterizations for prepared nano γ-Al2O3 support at different temperatures and for nano NiMo/γ-Al2O3 catalyst like X-ray diffraction, X-ray fluorescent, AFM, SEM, BET surface area, and pore volume.
The N
... Show MoreA cermet (ceramic-metal) composite have been prepared from alumina (γ-Al2O3) reinforced with aluminum (Al) for the concentrations of (0, 10, 20, 30, 40, & 50) wt. %Al. The cermet was formed by single axial pressing, sintered in vacuum atmosphere. Compaction behaviors were studied in solid state sintering at sintering temperatures (400, 450, & 550) °C, sintering times (2, 4, & 6) hrs., and forming pressures (5, 10, 15) MPa, also in liquid phase sintering at (800 °C). The cermet was characterized by x-ray diffraction (XRD) and by scanning electron microscope (SEM), also physical and mechanical properties have been studied. SEM results showed the Al flowing inside the ceramic body due to uniform distribution of Al particles a
... Show MoreSpent hydrodesulfurization (Co-Mo/γ-Al2O3) catalyst generally contains valuable metals like molybdenum (Mo), cobalt (Co), aluminium (Al) on a supporting material, such as γ-Al2O3. In the present study, a two stages alkali/acid leaching process was conducted to study leaching of cobalt, molybdenum and aluminium from Co-Mo/γ-Al2O3 catalyst. The acid leaching of spent catalyst, previously treated by alkali solution to remove molybdenum, yielded a solution rich in cobalt and aluminium.
Two methods were established to separate cobalt from the spent catalyst CoMo which also contain Co, Al and Fe. The first method was the precipitation technique by controlling the pH. At pH 5, 76% of the cobalt which was collected with 1.4% Al and 0.5% Fe as contaminants. The second method was the anion exchange by using Amberlite 400 resin, 100% of the cobalt and was collected with 99.46% purity.The only contaminant was Fe with 0.54% with no Al. For a large scale production of cobalt from this spent catalyst, a batch process was designed with a production of 80 grams per batch by using the anion exchange technique. Kilograms quantities of Co were collected.
New types of hydrodesulfurization (HDS) catalyst Re-Ni-Mo/ γ-Al2O3 was prepared and tested separately with two prepared conventional HDS catalysts (Ni-Mo/ γ-Al2O3 and Co-Mo//γ-Al2O3) by using a pilot plant hydrotreatment unit. Activities of three prepared hydrodesulfurization catalysts were examined in hydrodesulfurization (HDS) of atmospheric gas oil at different temperatures 275 to 350 °C and LHSV 1 to 4 h-1, the reactions conducted under constant pressure 40 bar and H2/HC ratio 500 ml/ml .Moreover, the hydrogenation of aromatic (HAD) in gas oil has been studied. HDS was much improved by adding promoter Re to the Ni-Mo/Al2O3
... Show More