Significant advances in horizontal well drilling technology have been made in recent years. The conventional productivity equations for single phase flowing at steady state conditions have been used and solved using Microsoft Excel for various reservoir properties and different horizontal well lengths.
The deviation between the actual field data, and that obtained by the software based on conventional equations have been adjusted to introduce some parameters inserted in the conventional equation.
The new formula for calculating flow efficiency was derived and applied with the best proposed values of coefficients ψ=0.7 and ω= 1.4. The simulated results fitted the field data.
Various reservoir and field parameters including lateral horizontal length of the horizontal well (L), Skin factor (S), ratio of the vertical to horizontal permeability of the formation (KV/KH), and the vertical thickness of the productive zone (h) were studied and verified to generalize the suggested equation to estimate the horizontal well productivity indices for various reservoir kinds. This led to creating a new formula of flow efficiency equation that could be applied in AHDEB field.
Gas hydrate formation is considered one of the major problems facing the oil and gas industry as it poses a significant threat to the production, transportation and processing of natural gas. These solid structures can nucleate and agglomerate gradually so that a large cluster of hydrate is formed, which can clog flow lines, chokes, valves, and other production facilities. Thus, an accurate predictive model is necessary for designing natural gas production systems at safe operating conditions and mitigating the issues induced by the formation of hydrates. In this context, a thermodynamic model for gas hydrate equilibrium conditions and cage occupancies of N2 + CH4 and N2 + CO4 gas mix
A study to find the optimum separators pressures of separation stations has been performed. Stage separation of oil and gas is accomplished with a series of separators operating at sequentially reduced pressures. Liquid is discharged from a higher-pressure separator into the lower-pressure separator. The set of working separator pressures that yields maximum recovery of liquid hydrocarbon from the well fluid is the optimum set of pressures, which is the target of this work.
A computer model is used to find the optimum separator pressures. The model employs the Peng-Robinson equation of state (Peng and Robinson 1976) for volatile oil. The application of t