Preferred Language
Articles
/
exf5cJMBVTCNdQwC2dPl
The impact of using artificial intelligence techniques in improving the quality of educational services/case study at the University of Baghdad
...Show More Authors

The utilization of artificial intelligence techniques has garnered significant interest in recent research due to their pivotal role in enhancing the quality of educational offerings. This study investigated the impact of employing artificial intelligence techniques on improving the quality of educational services, as perceived by students enrolled in the College of Pharmacy at the University of Baghdad. The study sample comprised 379 male and female students. A descriptive-analytical approach was used, with a questionnaire as the primary tool for data collection. The findings indicated that the application of artificial intelligence methods was highly effective, and the educational services provided to students were of exceptional quality. The results also showed a strong correlation (correlation coefficient of 0.719) between the use of artificial intelligence techniques and the quality of educational services. This correlation was statistically significant at a confidence level of 99%. The impact of artificial intelligence techniques and their dimensions on the quality of educational services is highly significant at a confidence level of 99%. This suggests that artificial intelligence technologies play a major role in enhancing the quality of educational services. The study emphasizes the importance of creating technologically advanced classrooms equipped with modern devices and equipment to enhance the learning experience and provide an advanced educational environment. It also highlights the significance of effectively addressing students’ complaints and grievances through technical means, such as electronic communication platforms, social media platforms, technical support via the Internet, and smartphone applications. These measures are essential in providing high-quality educational services.

View Publication Preview PDF
Quick Preview PDF
Publication Date
Fri Sep 30 2022
Journal Name
Iraqi Journal Of Science
Network Traffic Prediction Based on Boosting Learning
...Show More Authors

Classification of network traffic is an important topic for network management, traffic routing, safe traffic discrimination, and better service delivery. Traffic examination is the entire process of examining traffic data, from intercepting traffic data to discovering patterns, relationships, misconfigurations, and anomalies in a network. Between them, traffic classification is a sub-domain of this field, the purpose of which is to classify network traffic into predefined classes such as usual or abnormal traffic and application type. Most Internet applications encrypt data during traffic, and classifying encrypted data during traffic is not possible with traditional methods. Statistical and intelligence methods can find and model traff

... Show More
View Publication Preview PDF
Scopus (1)
Crossref (1)
Scopus Crossref
Publication Date
Wed Aug 30 2023
Journal Name
Baghdad Science Journal
Post COVID-19 Effect on Medical Staff and Doctors' Productivity Analysed by Machine Learning
...Show More Authors

The COVID-19 pandemic has profoundly affected the healthcare sector and the productivity of medical staff and doctors. This study employs machine learning to analyze the post-COVID-19 impact on the productivity of medical staff and doctors across various specialties. A cross-sectional study was conducted on 960 participants from different specialties between June 1, 2022, and April 5, 2023. The study collected demographic data, including age, gender, and socioeconomic status, as well as information on participants' sleeping habits and any COVID-19 complications they experienced. The findings indicate a significant decline in the productivity of medical staff and doctors, with an average reduction of 23% during the post-COVID-19 period. T

... Show More
View Publication Preview PDF
Scopus (6)
Crossref (13)
Scopus Crossref
Publication Date
Sat Dec 30 2023
Journal Name
Nasaq Journal
Iraqi EFL Students’ Attitudes towards Online Learning
...Show More Authors

Online learning is not a new concept in education, but it has been used extensively since the Covid-19 pandemic and is still in use now. Every student in the world has gone through this learning process from the primary to the college levels, with both teachers and students conducting instruction online (at home). The goal of the current study is to investigate college students’ attitudes towards online learning. To accomplish the goal of the current study, a questionnaire is developed and adjusted before being administered to a sample of 155 students. Additionally, validity and reliability are attained. Some conclusions, recommendations, and suggestions are offered in the end.

Publication Date
Sun Jan 20 2019
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Text Classification Based on Weighted Extreme Learning Machine
...Show More Authors

The huge amount of documents in the internet led to the rapid need of text classification (TC). TC is used to organize these text documents. In this research paper, a new model is based on Extreme Machine learning (EML) is used. The proposed model consists of many phases including: preprocessing, feature extraction, Multiple Linear Regression (MLR) and ELM. The basic idea of the proposed model is built upon the calculation of feature weights by using MLR. These feature weights with the extracted features introduced as an input to the ELM that produced weighted Extreme Learning Machine (WELM). The results showed   a great competence of the proposed WELM compared to the ELM. 

View Publication Preview PDF
Crossref (3)
Crossref
Publication Date
Sun Jan 30 2022
Journal Name
Iraqi Journal Of Science
Gait Recognition Based on Deep Learning
...Show More Authors

      In current generation of technology, a robust security system is required based on biometric trait such as human gait, which is a smooth biometric feature to understand humans via their taking walks pattern. In this paper, a person is recognized based on his gait's style that is captured from a video motion previously recorded with a digital camera. The video package is handled via more than one phase after splitting it into a successive image (called frames), which are passes through a preprocessing step earlier than classification procedure operation. The pre-processing steps encompass converting each image into a gray image, cast off all undesirable components and ridding it from noise, discover differen

... Show More
View Publication Preview PDF
Scopus (4)
Crossref (1)
Scopus Crossref
Publication Date
Tue Jun 23 2020
Journal Name
Baghdad Science Journal
Anomaly Detection Approach Based on Deep Neural Network and Dropout
...Show More Authors

   Regarding to the computer system security, the intrusion detection systems are fundamental components for discriminating attacks at the early stage. They monitor and analyze network traffics, looking for abnormal behaviors or attack signatures to detect intrusions in early time. However, many challenges arise while developing flexible and efficient network intrusion detection system (NIDS) for unforeseen attacks with high detection rate. In this paper, deep neural network (DNN) approach was proposed for anomaly detection NIDS. Dropout is the regularized technique used with DNN model to reduce the overfitting. The experimental results applied on NSL_KDD dataset. SoftMax output layer has been used with cross entropy loss funct

... Show More
View Publication Preview PDF
Scopus (23)
Crossref (9)
Scopus Clarivate Crossref
Publication Date
Sun May 26 2019
Journal Name
Iraqi Journal Of Science
Exact and Local Search Methods for Solving Travelling Salesman Problem with Practical Application
...Show More Authors

This paper investigates some exact and local search methods to solve the traveling salesman problem. The Branch and Bound technique (BABT) is proposed, as an exact method, with two models. In addition, the classical Genetic Algorithm (GA) and Simulated Annealing (SA) are discussed and applied as local search methods. To improve the performance of GA we propose two kinds of improvements for GA; the first is called improved GA (IGA) and the second is Hybrid GA (HGA).

The IGA gives best results than GA and SA, while the HGA is the best local search method for all within a reasonable time for 5 ≤ n ≤ 2000, where n is the number of visited cities. An effective method of reducing the size of the TSP matrix was proposed with

... Show More
View Publication Preview PDF
Scopus (3)
Crossref (1)
Scopus Crossref
Publication Date
Thu Dec 02 2021
Journal Name
Iraqi Journal Of Science
An Approach Based on Decision Tree and Self-Organizing Map For Intrusion Detection
...Show More Authors

In modern years, internet and computers were used by many nations all overhead the world in different domains. So the number of Intruders is growing day-by-day posing a critical problem in recognizing among normal and abnormal manner of users in the network. Researchers have discussed the security concerns from different perspectives. Network Intrusion detection system which essentially analyzes, predicts the network traffic and the actions of users, then these behaviors will be examined either anomaly or normal manner. This paper suggested Deep analyzing system of NIDS to construct network intrusion detection system and detecting the type of intrusions in traditional network. The performance of the proposed system was evaluated by using

... Show More
View Publication Preview PDF
Publication Date
Sun Aug 01 2021
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Cascade-Forward Neural Network for Volterra Integral Equation Solution
...Show More Authors

The method of solving volterra integral equation by using numerical solution is a simple operation but to require many memory space to compute and save the operation. The importance of this equation appeares new direction to solve the equation by using new methods to avoid obstacles. One of these methods employ neural network for obtaining the solution.

This paper presents a proposed method by using cascade-forward neural network to simulate volterra integral equations solutions. This method depends on training cascade-forward neural network by inputs which represent the mean of volterra integral equations solutions, the target of cascade-forward neural network is to get the desired output of this network. Cascade-forward neural

... Show More
View Publication Preview PDF
Crossref (3)
Crossref
Publication Date
Thu Jan 30 2020
Journal Name
Journal Of Engineering
  Positional Accuracy Assessment for Updating Authoritative Geospatial Datasets Based on Open Source Data and Remotely Sensed Images
...Show More Authors

OpenStreetMap (OSM) represents the most common example of online volunteered mapping applications. Most of these platforms are open source spatial data collected by non-experts volunteers using different data collection methods. OSM project aims to provide a free digital map for all the world. The heterogeneity in data collection methods made OSM project databases accuracy is unreliable and must be dealt with caution for any engineering application. This study aims to assess the horizontal positional accuracy of three spatial data sources are OSM road network database, high-resolution Satellite Image (SI), and high-resolution Aerial Photo (AP) of Baghdad city with respect to an analogue formal road network dataset obtain

... Show More
View Publication Preview PDF
Crossref (2)
Crossref