The internet of medical things (IoMT), which is expected the lead to the biggest technology in worldwide distribution. Using 5th generation (5G) transmission, market possibilities and hazards related to IoMT are improved and detected. This framework describes a strategy for proactively addressing worries and offering a forum to promote development, alter attitudes and maintain people's confidence in the broader healthcare system without compromising security. It is combined with a data offloading system to speed up the transmission of medical data and improved the quality of service (QoS). As a result of this development, we suggested the enriched energy efficient fuzzy (EEEF) data offloading technique to enhance the delivery of data transmission at the original targeted location. Initially, healthcare data was collected. Preprocessing is achieved by the normalization method. An EEEF data offloading scheme is proposed. A fruit fly optimization (FFO) technique is utilized. The performance metrics such as energy consumption, delay, resource utilization, scalability, and packet loss are analyzed and compared with existing techniques. The future scope will make use of a revolutionary optimization approach for IoMT.
This research which is entitled (Devine Beauty), aims at studying the philosophical and literary extensive visions of Andalusian poets in search of pleasure in the beauty of divine self and its impact on the formation of a philosophical frame of mind. It also attempts to investigate the aesthetic aspects that highlight the prestige and greatness and majesty of that absolute beauty.
The most important conclusion of the reach is the Bany Ahmar poets use the beauty of women and the pleasure of wine as cods to reach divine beauty and get the happiness desired with the reflection of absolute beauty in a clear philosophy and thinking of the kingdom of God Almighty.
The No Mobile Phone Phobia or Nomophobia notion is referred to the psychological condition once humans have a fear of being disconnected from mobile phone connectivity. Hence, it is considered as a recent age phobia that emerged nowadays as a consequence of high engagement between people, mobile data, and communication inventions, especially the smart phones. This review is based on earlier observations and current debate such as commonly used techniques that modeling and analyzing this phenomenon like statistical studies. All that in order to possess preferable comprehension concerning human reactions to the speedy technological ubiquitous. Accordingly, humans ought to restrict their utilization of mobile phones instead of prohibit
... Show MoreLarge amounts of plasma, the universe’s fourth most common kind of stuff, may be found across our galaxy and other galaxies. There are four types of matter in the cosmos, and plasma is the most common. By heating the compressed air or inert gases to create negatively and positively charged particles known as ions, electrically neutral particles in their natural state are formed. Many scientists are currently focusing their efforts on the development of artificial plasma and the possible advantages it may have for humankind in the near future. In the literature, there is a scarcity of information regarding plasma applications. It’s the goal of this page to describe particular methods for creating and using plasma, which may be us
... Show MoreMigration today is a global problem and is an extraordinary social phenomenon that affects countries around the world. Globalization, demographic shifts, political persecution, wars, armed conflicts, natural and environmental disasters, lack of skills, employment and other reasons in many countries have accelerated global migration rates. It has been observed in recent years that there is a rapid feminization of all forms and stages of migration. Women now make up nearly half of the migrant population around the world, and it appears that women have their own motives for migration in addition to family reunification in escaping Gender discrimination, political violence, and social independence, economic motives and the desire for better opp
... Show MoreDiscriminant between groups is one of the common procedures because of its ability to analyze many practical phenomena, and there are several methods can be used for this purpose, such as linear and quadratic discriminant functions. recently, neural networks is used as a tool to distinguish between groups.
In this paper the simulation is used to compare neural networks and classical method for classify observations to group that is belong to, in case of some variables that don’t follow the normal distribution. we use the proportion of number of misclassification observations to the all observations as a criterion of comparison.
. In recent years, Bitcoin has become the most widely used blockchain platform in business and finance. The goal of this work is to find a viable prediction model that incorporates and perhaps improves on a combination of available models. Among the techniques utilized in this paper are exponential smoothing, ARIMA, artificial neural networks (ANNs) models, and prediction combination models. The study's most obvious discovery is that artificial intelligence models improve the results of compound prediction models. The second key discovery was that a strong combination forecasting model that responds to the multiple fluctuations that occur in the bitcoin time series and Error improvement should be used. Based on the results, the prediction a
... Show MoreThis paper is specifically a detailed review of the Spatial Quantile Autoregressive (SARQR) model that refers to the incorporation of quantile regression models into spatial autoregressive models to facilitate an improved analysis of the characteristics of spatially dependent data. The relevance of SARQR is emphasized in most applications, including but not limited to the fields that might need the study of spatial variation and dependencies. In particular, it looks at literature dated from 1971 and 2024 and shows the extent to which SARQR had already been applied previously in other disciplines such as economics, real estate, environmental science, and epidemiology. Accordingly, evidence indicates SARQR has numerous benefits compar
... Show MoreThis research is a theoretical study that deals with the presentation of the literature of statistical analysis from the perspective of gender or what is called Engendering Statistics. The researcher relied on a number of UN reports as well as some foreign sources to conduct the current study. Gender statistics are defined as statistics that reflect the differences and inequality of the status of women and men overall domains of life, and their importance stems from the fact that it is an important tool in promoting equality as a necessity for the process of sustainable development and the formulation of national and effective development policies and programs. The empowerment of women and the achievement of equality between men and wome
... Show MoreMost Internet-tomography problems such as shared congestion detection depend on network measurements. Usually, such measurements are carried out in multiple locations inside the network and relied on local clocks. These clocks usually skewed with time making these measurements unsynchronized and thereby degrading the performance of most techniques. Recently, shared congestion detection has become an important issue in many computer networked applications such as multimedia streaming and
peer-to-peer file sharing. One of the most powerful techniques that employed in literature is based on Discrete Wavelet Transform (DWT) with cross-correlation operation to determine the state of the congestion. Wavelet transform is used as a de-noisin
In recent years, Bitcoin has become the most widely used blockchain platform in business and finance. The goal of this work is to find a viable prediction model that incorporates and perhaps improves on a combination of available models. Among the techniques utilized in this paper are exponential smoothing, ARIMA, artificial neural networks (ANNs) models, and prediction combination models. The study's most obvious discovery is that artificial intelligence models improve the results of compound prediction models. The second key discovery was that a strong combination forecasting model that responds to the multiple fluctuations that occur in the bitcoin time series and Error improvement should be used. Based on the results, the prediction acc
... Show More