Preferred Language
Articles
/
dBaR2IcBVTCNdQwCoWqz
Study to amino acid-based inhibitors as an effective anti-corrosion material
...Show More Authors

The inhibitory behavior of L-Cysteine (Cys) and its derivatives towards iron corrosion through density functional theory (DFT) was investigated. The current research study undertakes a rigorous evaluation of global as well as local reactivity descriptors of the Cys in protonated as well as neutral forms and the changes in reactivity after the combination of Cys into di- and tripeptides. The inhibitory effect of di- and tri-peptides increases since, in the molecular structure, the number of reaction centers increase. We computed the adsorption energies (Eads) and low energy complexes with most stability for the adsorption of small peptides and Cys amino acids onto the surfaces of Fe (1 1 1). We found that the adsorption of tri-peptides onto these substrates was through a chemical adsorption. The absolute Eads values between these inhibitors on the investigated metal surface rose within the protonated forms. The adsorption ability of the peptides onto the surface of the iron was the best, demonstrating that their inhibitory efficiency is the highest from a theoretical perspective. The findings demonstrate that small peptides are promising candidates to be utilized as efficient “green” corrosion inhibitors.

Scopus Clarivate Crossref
View Publication