The increased size of grayscale images or upscale plays a central role in various fields such as medicine, satellite imagery, and photography. This paper presents a technique for improving upscaling gray images using a new mixing wavelet generation by tensor product. The proposed technique employs a multi-resolution analysis provided by a new mixing wavelet transform algorithm to decompose the input image into different frequency components. After processing, the low-resolution input image is effectively transformed into a higher-resolution representation by adding a zeroes matrix. Discrete wavelets transform (Daubechies wavelet Haar) as a 2D matrix is used but is mixed using tensor product with another wavelet matrix’s size. MATLAB R2021b is used as the main program, and the performance metrics of upscale are evaluated in gray images. The results exhibit the supremacy of the proposed approach in terms of visual quality and quantitative metrics. The upscale by mix transform using wavelet transform provides efficient upscale quality metrics as compared with the technique that upscales image by mix transform using Slantlet transform, which has an upscaled blurred image. Also, wavelet and Slantlet upscaled Peak Signal-to-Noise Ratio (PSNRus)=79.4698 and 76.6695, respectively. This approach is often used in cryptography and computer vision.
Image compression is an important tool to reduce the bandwidth and storage
requirements of practical image systems. To reduce the increasing demand of storage
space and transmission time compression techniques are the need of the day. Discrete
time wavelet transforms based image codec using Set Partitioning In Hierarchical
Trees (SPIHT) is implemented in this paper. Mean Square Error (MSE), Peak Signal
to Noise Ratio (PSNR) and Maximum Difference (MD) are used to measure the
picture quality of reconstructed image. MSE and PSNR are the most common picture
quality measures. Different kinds of test images are assessed in this work with
different compression ratios. The results show the high efficiency of SPIHT algori
This paper presents the matrix completion problem for image denoising. Three problems based on matrix norm are performing: Spectral norm minimization problem (SNP), Nuclear norm minimization problem (NNP), and Weighted nuclear norm minimization problem (WNNP). In general, images representing by a matrix this matrix contains the information of the image, some information is irrelevant or unfavorable, so to overcome this unwanted information in the image matrix, information completion is used to comperes the matrix and remove this unwanted information. The unwanted information is handled by defining {0,1}-operator under some threshold. Applying this operator on a given ma
... Show MoreHM Al-Dabbas, RA Azeez, AE Ali, Iraqi Journal of Science, 2023
Water contamination is a pressing global concern, especially regarding the presence of nitrate ions. This research focuses on addressing this issue by developing an effective adsorbent for removing nitrate ions from aqueous solutions. two adsorbents Chitosan-Zeolite-Zirconium (Cs-Ze-Zr composite beads and Chitosan-Bentonite-Zirconium Cs-Bn-Zr composite beads were prepared. The study involved continuous experimentation using a fixed bed column with varying bed heights (1.5 and 3 cm) and inlet flow rates (1 and 3 ml/min). The results showed that the breakthrough time increased with higher bed heights for both Cs-Ze-Zr and Cs-Bn-Zr composite beads. Conversely, an increase in flow rate led to a decrease in breakthrough time. Notab
... Show MoreDetecting and subtracting the Motion objects from backgrounds is one of the most important areas. The development of cameras and their widespread use in most areas of security, surveillance, and others made face this problem. The difficulty of this area is unstable in the classification of the pixels (foreground or background). This paper proposed a suggested background subtraction algorithm based on the histogram. The classification threshold is adaptively calculated according to many tests. The performance of the proposed algorithms was compared with state-of-the-art methods in complex dynamic scenes.
The gas-lift method is crucial for maintaining oil production, particularly from an established field when the natural energy of the reservoirs is depleted. To maximize oil production, a major field's gas injection rate must be distributed as efficiently as possible across its gas-lift network system. Common gas-lift optimization techniques may lose their effectiveness and become unable to replicate the gas-lift optimum in a large network system due to problems with multi-objective, multi-constrained & restricted gas injection rate distribution. The main objective of the research is to determine the possibility of using the genetic algorithm (GA) technique to achieve the optimum distribution for the continuous gas-lift injectio
... Show MoreLaser is a powerful device that has a wide range of applications in fields ranging from materials science and manufacturing to medicine and fibre optic communications. One remarkable
Nanoparticles (NPs) have unique capabilities that make them an eye-opener opportunity for the upstream oil industry. Their nano-size allows them to flow within reservoir rocks without the fear of retention between micro-sized pores. Incorporating NPs with drilling and completion fluids has proved to be an effective additive that improves various properties such as mud rheology, filtration, thermal conductivity, and wellbore stability. However, the biodegradability of drilling fluid chemicals is becoming a global issue as the discharged wetted cuttings raise toxicity concerns and environmental hazards. Therefore, it is urged to utilize chemicals that tend to break down and susceptible to biodegradation. This research presents the pra
... Show MoreImage quality has been estimated and predicted using the signal to noise ratio (SNR). The purpose of this study is to investigate the relationships between body mass index (BMI) and SNR measurements in PET imaging using patient studies with liver cancer. Three groups of 59 patients (24 males and 35 females) were divided according to BMI. After intravenous injection of 0.1 mCi of 18F-FDG per kilogram of body weight, PET emission scans were acquired for (1, 1.5, and 3) min/bed position according to the weight of patient. Because liver is an organ of homogenous metabolism, five region of interest (ROI) were made at the same location, five successive slices of the PET/CT scans to determine the mean uptake (signal) values and its standard deviat
... Show MoreCorrect grading of apple slices can help ensure quality and improve the marketability of the final product, which can impact the overall development of the apple slice industry post-harvest. The study intends to employ the convolutional neural network (CNN) architectures of ResNet-18 and DenseNet-201 and classical machine learning (ML) classifiers such as Wide Neural Networks (WNN), Naïve Bayes (NB), and two kernels of support vector machines (SVM) to classify apple slices into different hardness classes based on their RGB values. Our research data showed that the DenseNet-201 features classified by the SVM-Cubic kernel had the highest accuracy and lowest standard deviation (SD) among all the methods we tested, at 89.51 % 1.66 %. This
... Show More