Preferred Language
Articles
/
bxfhUJABVTCNdQwCQoZk
Room temperature flexible sensor based on F-MWCNT modified by polypyrrole conductive polymer for NO2 gas detection
...Show More Authors

This project sought to fabricate a flexible gas sensor based on a short functionalized multi-walled carbon nanotubes (f-MWCNTs) network for nitrogen dioxide gas detection. The network was prepared by filtration from the suspension (FFS) method and modified by coating with a layer of polypyrrole conductive polymer (PPy) prepared by the oxidative chemical polymerization to improve the properties of the network. The structural, optical, and morphological properties of the f-MWCNTs and f-MWCNTs/PPy network were studied using X-ray diffraction (XRD), Fourie-transform infrared (FTIR), with an AFM (atomic force microscopy). XRD proved that the structure of f-MWCNTs is unaffected by the synthesis procedure. The FTIR spectra verified the existence of the functional groups and bonding for the used materials. AFM images reflect coating the network with conductive polymer on the surface parameters and granularity distribution. The sensitivity of the fabricated sensor was measured after exposure the network to 𝑁𝑂2 gas at concentrations of 20 ppm with different operating temperatures using a homemade gas sensor system. The fabricated sensor works at room temperature with a sensitivity of about 56.17% while coating the sensor surface with conductive polymer improves the sensitivity at all operating temperatures.

Scopus Crossref
View Publication
Publication Date
Mon Dec 20 2021
Journal Name
Baghdad Science Journal
Recurrent Stroke Prediction using Machine Learning Algorithms with Clinical Public Datasets: An Empirical Performance Evaluation
...Show More Authors

Recurrent strokes can be devastating, often resulting in severe disability or death. However, nearly 90% of the causes of recurrent stroke are modifiable, which means recurrent strokes can be averted by controlling risk factors, which are mainly behavioral and metabolic in nature. Thus, it shows that from the previous works that recurrent stroke prediction model could help in minimizing the possibility of getting recurrent stroke. Previous works have shown promising results in predicting first-time stroke cases with machine learning approaches. However, there are limited works on recurrent stroke prediction using machine learning methods. Hence, this work is proposed to perform an empirical analysis and to investigate machine learning al

... Show More
View Publication Preview PDF
Scopus (10)
Crossref (1)
Scopus Clarivate Crossref
Publication Date
Thu Dec 01 2011
Journal Name
Journal Of Engineering
PERFORMANCE CHARACTERISTICS OF METHANOL-DIESEL BLENDS IN CI ENGINES
...Show More Authors

Owing to the energy crisis and pollution problems of today, investigations have concentrated on
decreasing fuel consumption and on lowering the concentration of toxic components in combustion
products by using non-petroleum, renewable, sustainable and non-polluting fuels. While conventional energy sources such as natural gas, oil and coal are non-renewable, alcohol can be coupled to renewable and sustainable energy sources.
In this study, the combustion characteristics of diesel fuel and methanol blends were compared.
The tests were performed at steady state conditions in a four-cylinder DI diesel engine at full load at
1500-rpm engine speed. The experimental results showed that diesel methanol blends provided
12.7% inc

... Show More
View Publication Preview PDF
Crossref
Publication Date
Wed Oct 15 2014
Journal Name
International Journal Of Advanced Research
A survey/ Development of Passive Optical Access Networks Technologies
...Show More Authors

The bandwidth requirements of telecommunication network users increased rapidly during the last decades. Optical access technologies must provide the bandwidth demand for each user. The passive optical access networks (PONs) support a maximum data rate of 100 Gbps by using the Orthogonal Frequency Division Multiplexing (OFDM) technique in the optical access network. In this paper, the optical broadband access networks with many techniques from Time Division Multiplexing Passive Optical Networks (TDM PON) to Orthogonal Frequency Division Multiplex Passive Optical Networks (OFDM PON) are presented. The architectures, advantages, disadvantages, and main parameters of these optical access networks are discussed and reported which have many ad

... Show More
View Publication Preview PDF
Publication Date
Sun Jan 30 2022
Journal Name
Iraqi Journal Of Science
Diagnosis of Malaria Infected Blood Cell Digital Images using Deep Convolutional Neural Networks
...Show More Authors

     Automated medical diagnosis is an important topic, especially in detection and classification of diseases. Malaria is one of the most widespread diseases, with more than 200 million cases, according to the 2016 WHO report. Malaria is usually diagnosed using thin and thick blood smears under a microscope. However, proper diagnosis is difficult, especially in poor countries where the disease is most widespread. Therefore, automatic diagnostics helps in identifying the disease through images of red blood cells, with the use of machine learning techniques and digital image processing. This paper presents an accurate model using a Deep Convolutional Neural Network build from scratch. The paper also proposed three CNN

... Show More
View Publication Preview PDF
Scopus (10)
Crossref (6)
Scopus Crossref
Publication Date
Sat Jun 06 2020
Journal Name
Journal Of The College Of Education For Women
Image classification with Deep Convolutional Neural Network Using Tensorflow and Transfer of Learning
...Show More Authors

The deep learning algorithm has recently achieved a lot of success, especially in the field of computer vision. This research aims to describe the classification method applied to the dataset of multiple types of images (Synthetic Aperture Radar (SAR) images and non-SAR images). In such a classification, transfer learning was used followed by fine-tuning methods. Besides, pre-trained architectures were used on the known image database ImageNet. The model VGG16 was indeed used as a feature extractor and a new classifier was trained based on extracted features.The input data mainly focused on the dataset consist of five classes including the SAR images class (houses) and the non-SAR images classes (Cats, Dogs, Horses, and Humans). The Conv

... Show More
View Publication Preview PDF
Crossref (1)
Crossref
Publication Date
Mon Jan 30 2023
Journal Name
Iraqi Journal Of Science
Prediction of Well Logs Data and Estimation of Petrophysical Parameters of Mishrif Formation, Nasiriya Field, South of Iraq Using Artificial Neural Network (ANN)
...Show More Authors

    Petrophysical properties including volume of shale, porosity and water saturation are significance parameters for petroleum companies in evaluating the reservoirs and determining the hydrocarbon zones. These can be achieved through conventional petrophysical calculations from the well logs data such as gamma ray, sonic, neutron, density and deep resistivity. The well logging operations of the targeted limestone Mishrif reservoirs in Ns-X Well, Nasiriya Oilfield, south of Iraq could not be done due to some problems related to the well condition. The gamma ray log was the only recorded log through the cased borehole. Therefore, evaluating the reservoirs and estimating the perforation zones has not performed and the drilled well was

... Show More
View Publication Preview PDF
Scopus (5)
Crossref (1)
Scopus Crossref
Publication Date
Tue Oct 17 2017
Journal Name
Spe/iatmi Asia Pacific Oil & Gas Conference And Exhibition
Retention of Silica Nanoparticles in Limestone Porous Media
...Show More Authors

Nanofluids (dispersion of nanoparticles in a base fluid) have been suggested as promising agents in subsurface industries including enhanced oil recovery. Nanoparticles can easily pass through small pore throats in reservoirs formations; however, physicochemical interactions between nanoparticles and between nanoparticles and rocks can cause a significant retention of nanoparticles. This study investigated the transport, attach, and retention of silica nanoparticles in core plugs. The hydrophilic silica nanoparticles were injected into limestone core as nanofluid of different nanoparticles size (5 nm, and 20 nm), concentration (0.005 – 0.1 wt% SiO2), and base fluid salinity (0 – 3 wt% NaCl) at different temperatures (23, and 50 °C). D

... Show More
Scopus (37)
Crossref (17)
Scopus Crossref
Publication Date
Sun Jun 23 2019
Journal Name
American Rock Mechanics Association
Using an Analytical Model to Predict Collapse Volume During Drilling: A Case Study from Southern Iraq
...Show More Authors

Zubair Formation is one of the richest petroleum systems in Southern Iraq. This formation is composed mainly of sandstones interbedded with shale sequences, with minor streaks of limestone and siltstone. Borehole collapse is one of the most critical challenges that continuously appear in drilling and production operations. Problems associated with borehole collapse, such as tight hole while tripping, stuck pipe and logging tools, hole enlargement, poor log quality, and poor primary cement jobs, are the cause of the majority of the nonproductive time (NPT) in the Zubair reservoir developments. Several studies released models predicting the onset of borehole collapse and the amount of enlargement of the wellbore cross-section. However, assump

... Show More
View Publication
Publication Date
Sat Dec 31 2011
Journal Name
Al-khwarizmi Engineering Journal
Simulation of Oxygen Mass Transfer in an Internal Loop Airlift Reactor with Axial Dispersion Model
...Show More Authors

The effect of superficial gas velocity within the range 0.01-0.164 m/s on gas holdup (overall, riser and down comer), volumetric oxygen mass transfer coefficient, liquid circulation velocity was studied in an internal loop concentric tubes airlift reactor (working volume 45 liters). It was shown that as the usg increases the gas holdup and also the liquid circulation velocity increase. Also it was found that increasing superficial gas velocity lead to increase the interfacial area that increases the overall oxygen mass transfer coefficient. The hydrodynamic experimental results were modeled with the available equations in the literature. The predicted data gave an acceptable accuracy with the empirical data.

The final

... Show More
View Publication Preview PDF
Publication Date
Tue May 30 2023
Journal Name
Iraqi Journal Of Science
Material Recognition of Foreign Object Debris using Deep Learning
...Show More Authors

     Foreign Object Debris (FOD) is defined as one of the major problems in the airline maintenance industry, reducing the levels of safety. A foreign object which may result in causing serious damage to an airplane, including engine problems and personal safety risks. Therefore, it is critical to detect FOD in place to guarantee the safety of airplanes flying. FOD detection systems in the past lacked an effective method for automatic material recognition as well as high speed and accuracy in detecting materials. This paper proposes the FOD model using a variety of feature extraction approaches like Gray-level Co-occurrence Matrix (GLCM) and Linear Discriminant Analysis (LDA) to extract features and Deep Learning (DL) for classifi

... Show More
View Publication Preview PDF
Scopus Crossref