The aim of this research is to study some types of fibrewise fuzzy topological spaces. The six major goals are explored in this thesis. The very first goal, introduce and study the notions types of fibrewise topological spaces, namely fibrewise fuzzy j-topological spaces, Also, we introduce the concepts of fibrewise j-closed fuzzy topological spaces, fibrewise j-open fuzzy topological spaces, fibrewise locally sliceable fuzzy j-topological spaces and fibrewise locally sectionable fuzzy j-topological spaces. Furthermore, we state and prove several Theorems concerning these concepts, where j={δ,θ,α,p,s,b,β} The second goal is to introduce weak and strong forms of fibrewise fuzzy ω-topological spaces, namely the fibrewise fuzzy -ω-topological spaces, weakly fibrewise fuzzy -ω-topological spaces and strongly fibrewise fuzzy -ω- topological spaces. Also, several characterizations and properties of this class are also given as well. In addition, we focused on studying the relationship between weakly fibrewise fuzzy -ω-topological spaces and strongly fibrewise fuzzy -ω-topological spaces The third goal is to present fibrewise fuzzy types of the most importint separation axioms of ordinary fuzz topology namely fibrewise fuzzy (T_0 spaces, T_1 spaces, R_0 spaces, Hausdorff spaces, functionally Hausdorff spaces, regular spaces, completely regular spaces, normal spaces and normal spaces). It also has a lot of results. The fourth goal is to learn more about fibrewise fuzzy topological spaces, particularly fibrewise fuzzy compact and fibrewise locally fuzzy compact spaces. We also look at the connections between the many fibrewise fuzzy separation axioms and fibrewise fuzzy compact (or fibrewise locally fuzzy compact) spaces. We also provide a list of possible responses The fifth goal is to present a modern concept of fibrewise topological spaces known as fibrewise fuzzy ideal topological spaces. As a result, we define fibrewise closed fuzzy ideal topological spaces, fibrewise open fuzzy ideal topological spaces, and fibrewise fuzzy j-ideal topological spaces, where j ∈{α,P,S,b ,β} The sixth goal is to present a new concepts in fibrewise bitopological spaces known as fibrewise fuzzy ij-closed, fibrewise fuzzy ij-compact, fibrewise fuzzy ij-perfect, fibrewise fuzzy weakly ij-closed, and fibrewise fuzzy almost ij-perfect. It also introduces some concepts such as contact fuzzy point, ij-adherent fuzzy point, fuzzy filter, fuzzy filter base, ij-converges to a fuzzy subset, ij-directed toward a fuzzy set, ij-fuzzy continuous, ij-fuzzy closed functions, ij-fuzzy rigid set, ij-fuzzy continuous functions, weakly ij-fuzzy closed, ij-H-fuzzy set, almost ij-perfect bitopological spaces. Obtain some of its fundamental properties and characterizations as well.
The research aims to improve the effectiveness of internal control system according to a model COSO, by identifying the availability of system components according to the model and then improve the effectiveness of each component by focusing on areas for improvement in each component, as it was addressed to a model COSO and then Maamth with the environment, the current Iraqi by introducing some improvements on the form of some mechanisms of corporate governance of the Council of Directors, and senior management, the Audit Committee, Committee appointments, especially that supplies application available in the laws and legislation, the current Iraqi, taking into consideration to make some
... Show MoreIn this paper, we used maximum likelihood method and the Bayesian method to estimate the shape parameter (θ), and reliability function (R(t)) of the Kumaraswamy distribution with two parameters l , θ (under assuming the exponential distribution, Chi-squared distribution and Erlang-2 type distribution as prior distributions), in addition to that we used method of moments for estimating the parameters of the prior distributions. Bayes
Preparation and Identification of some new Pyrazolopyrin derivatives and their Polymerizations study
A theoretical model is developed to determine time evolution of temperature at the surface of an opaque target placed in air for cases characterized by the formation of laser supported absorption waves (LSAW) plasmas. The model takes into account the power temporal variation throughout an incident laser pulse, (i.e. pulse shape, or simply: pulse profile).
Three proposed profiles are employed and results are compared with the square pulse approximation of a constant power.