Preferred Language
Articles
/
bsj-9120
AlexNet-Based Feature Extraction for Cassava Classification: A Machine Learning Approach
...Show More Authors

Cassava, a significant crop in Africa, Asia, and South America, is a staple food for millions. However, classifying cassava species using conventional color, texture, and shape features is inefficient, as cassava leaves exhibit similarities across different types, including toxic and non-toxic varieties. This research aims to overcome the limitations of traditional classification methods by employing deep learning techniques with pre-trained AlexNet as the feature extractor to accurately classify four types of cassava: Gajah, Manggu, Kapok, and Beracun. The dataset was collected from local farms in Lamongan Indonesia. To collect images with agricultural research experts, the dataset consists of 1,400 images, and each type of cassava has 350 images. Three fully connected (FC) layers were utilized for feature extraction, namely fc6, fc7, and fc8. The classifiers employed were support vector machine (SVM), k-nearest neighbors (KNN), and Naive Bayes. The study demonstrated that the most effective feature extraction layer was fc6, achieving an accuracy of 90.7% with SVM. SVM outperformed KNN and Naive Bayes, exhibiting an accuracy of 90.7%, sensitivity of 83.5%, specificity of 93.7%, and F1-score of 83.5%. This research successfully addressed the challenges in classifying cassava species by leveraging deep learning and machine learning methods, specifically with SVM and the fc6 layer of AlexNet. The proposed approach holds promise for enhancing plant classification techniques, benefiting researchers, farmers, and environmentalists in plant species identification, ecosystem monitoring, and agricultural management.

Scopus Crossref
View Publication Preview PDF
Quick Preview PDF