These days, it is crucial to discern between different types of human behavior, and artificial intelligence techniques play a big part in that. The characteristics of the feedforward artificial neural network (FANN) algorithm and the genetic algorithm have been combined to create an important working mechanism that aids in this field. The proposed system can be used for essential tasks in life, such as analysis, automation, control, recognition, and other tasks. Crossover and mutation are the two primary mechanisms used by the genetic algorithm in the proposed system to replace the back propagation process in ANN. While the feedforward artificial neural network technique is focused on input processing, this should be based on the process of breaking the feedforward artificial neural network algorithm. Additionally, the result is computed from each ANN during the breaking up process, which is based on the breaking up of the artificial neural network algorithm into multiple ANNs based on the number of ANN layers, and therefore, each layer in the original artificial neural network algorithm is assessed. The best layers are chosen for the crossover phase after the breakage process, while the other layers go through the mutation process. The output of this generation is then determined by combining the artificial neural networks into a single ANN; the outcome is then checked to see if the process needs to create a new generation. The system performed well and produced accurate findings when it was used with data taken from the Vicon Robot system, which was primarily designed to record human behaviors based on three coordinates and classify them as either normal or aggressive.
In this paper, the generalized inverted exponential distribution is considered as one of the most important distributions in studying failure times. A shape and scale parameters of the distribution have been estimated after removing the fuzziness that characterizes its data because they are triangular fuzzy numbers. To convert the fuzzy data to crisp data the researcher has used the centroid method. Hence the studied distribution has two parameters which show a difficulty in separating and estimating them directly of the MLE method. The Newton-Raphson method has been used.
... Show MoreABSTRACT
In this research been to use some of the semi-parametric methods the based on the different function penalty as well as the methods proposed by the researcher because these methods work to estimate and variable selection of significant at once for single index model including (SCAD-NPLS method , the first proposal SCAD-MAVE method , the second proposal ALASSO-MAVE method ) .As it has been using a method simulation time to compare between the semi-parametric estimation method studied , and various simulation experiments to identify the best method based on the comparison criteria (mean squares error(MSE) and average mean squares error (AMSE)).
And the use
... Show MoreThe deterioration of buried sewers during their lifetime can be affected by several factors leading to bad performance and can damage the infrastructure similar to other engineering structures. The Hydraulic deterioration of the buried sewers caused by sewer blockages while the structural deterioration caused by sewer collapses due to sewer specifications and the surrounding soil characteristics and the groundwater level. The main objective of this research is to develop deterioration models, which are used to predict changes in sewer condition that can provide assessment tools for determining the serviceability of sewer networks in Baghdad city. Two deterioration models were developed and tested using statistical software SPSS, the
... Show MoreGrey system theory is a multidisciplinary scientific approach, which deals with systems that have partially unknown information (small sample and uncertain information). Grey modeling as an important component of such theory gives successful results with limited amount of data. Grey Models are divided into two types; univariate and multivariate grey models. The univariate grey model with one order derivative equation GM (1,1) is the base stone of the theory, it is considered the time series prediction model but it doesn’t take the relative factors in account. The traditional multivariate grey models GM(1,M) takes those factor in account but it has a complex structure and some defects in " modeling mechanism", "parameter estimation "and "m
... Show MoreThis paper develops a fuzzy multi-objective model for solving aggregate production planning problems that contain multiple products and multiple periods in uncertain environments. We seek to minimize total production cost and total labor cost. We adopted a new method that utilizes a Zimmermans approach to determine the tolerance and aspiration levels. The actual performance of an industrial company was used to prove the feasibility of the proposed model. The proposed model shows that the method is useful, generalizable, and can be applied to APP problems with other parameters.
المستخلص
يعد تقييم اداء العاملين احد اهم الركائز الاساسية التي يتوقف عليها نجاح أي منظمة تسعى بأن تتطور وتتميز بأنشطتها واداءها وبالأخص المنظمات التي لها خصوصية في عملها كالأجهزة الرقابية التي تعتمد في اداء انشطتها ومسؤولياتها على كفاءة مواردها البشرية, ومن هذا المنطلق يهدف هذا البحث الى تصميم انموذج ثلاثي المحاور (المؤهلات والقدرات، الاداء والانجاز، التعاون والالتزام الوظيفي) ثُماني المستويات
... Show MoreIn this article we derive two reliability mathematical expressions of two kinds of s-out of -k stress-strength model systems; and . Both stress and strength are assumed to have an Inverse Lomax distribution with unknown shape parameters and a common known scale parameter. The increase and decrease in the real values of the two reliabilities are studied according to the increase and decrease in the distribution parameters. Two estimation methods are used to estimate the distribution parameters and the reliabilities, which are Maximum Likelihood and Regression. A comparison is made between the estimators based on a simulation study by the mean squared error criteria, which revealed that the maximum likelihood estimator works the best.
In this paper three techniques for image compression are implemented. The proposed techniques consist of three dimension (3-D) two level discrete wavelet transform (DWT), 3-D two level discrete multi-wavelet transform (DMWT) and 3-D two level hybrid (wavelet-multiwavelet transform) technique. Daubechies and Haar are used in discrete wavelet transform and Critically Sampled preprocessing is used in discrete multi-wavelet transform. The aim is to maintain to increase the compression ratio (CR) with respect to increase the level of the transformation in case of 3-D transformation, so, the compression ratio is measured for each level. To get a good compression, the image data properties, were measured, such as, image entropy (He), percent r
... Show MoreThese search summaries in building a mathematical model to the issue of Integer linear Fractional programming and finding the best solution of Integer linear Fractional programming (I.L.F.P) that maximize the productivity of the company,s revenue by using the largest possible number of production units and maximizing denominator objective which represents,s proportion of profits to the costs, thus maximizing total profit of the company at the lowest cost through using Dinkelbach algorithm and the complementary method on the Light industries company data for 2013 and comparing results with Goal programming methods results.
It is clear that the final results of resolution and Dinkelbac
... Show More