Preferred Language
Articles
/
bsj-9036
المقاسات التكميلية الرئيسية من النمط –ss

     في هذا البحث، قدمنا ودرسنا مفاهيم المقاسات التكميلية الرئيسية من النمط-ss مع مقاسات الرفع من النمط-ss. هذان المفهومان هي تعميمات طبيعية للمقاسات التكميلية من النمط-ss مع مقاسات الرفع من النمط-ss. تم برهان العديد من خصائص هذه المقاسات. هنا تم التركيز على مقاسات الرفع من النمط-ss. تم الحصول على صفات جديدة للمقاسات التكميلية من النمط-ss باستخدام مقاسات الرفع من النمط-ss. هنا, عرفت مقاسات تكميلية رئيسية من نمط-ss ضعيفة. تم برهان المقاس T مقاس تكميلي رئيسي ضعيف من نمط- ssاذا وفقط اذا كان هومقاس تكميلي رئيسي من نمط- .ss واحدة من النتائج الأساسية تنص كل مقاس محلي بقوة هو تكميلي رئيسي من نمط-.ss  تم اثبات اذا كان T مقاس مجوف, فأن T تكميلي رئيسي من نمط-ss اذا وفقط اذا كان محلي بقوة. اذا كان اذا كان Rad(T) صغير في T فان تكميلي رئيسي من نمط-ss  اذا وفقط اذا T تكميلي رئيسي و

 Rad(T) ⊆ Soc(T)بالاضافة, اذا T=T_1⨁T_2  مع  T_1 و T_2مقاسان تكميليين رئيسيان من نمط-ss وT هي ديو, فأن T تكميلي رئيسي من نمط- .ss كذلك اثبت ذلك, أذا كانت T غير قابل للتحلل, فأن T رفع رئيسي من نمط-ss أذا وفقط أذا كان T مقاس مجوف رئيسي كذلك أذا كانت T مقاس مجوف رئيسي فأن T تكميلي رئيسي من نمطصغير في T فان تكميلي رئيسي من نمط-ss  اذا وفقط اذا T تكميلي رئيسي و Rad(T) ⊆ Soc(T)

بالاضافة, اذا T=T_1⨁T_2  مع  T_1 و T_2مقاسان تكميليين رئيسيان من نمط-ss وT هي ديو, فأن T تكميلي رئيسي من نمط- .ss كذلك اثبت ذلك, أذا كانت T غير قابل للتحلل, فأن T رفع رئيسي من نمط-ss أذا وفقط أذا كان T مقاس مجوف رئيسي كذلك أذا كانت T مقاس مجوف رئيسي فأن T تكميلي رئيسي من نمط-ss . في هذا العمل, اثبتت النتائج التالية: أذا كانت T مقاس مع خاصية (ss -PD_1), فأن كل مقاس جزئي دوار غير قابل للتحلل في T هو اما صغيرفي T أو مجموع الى T. كذلك, أذا كانت T مقاس على حلقة محلية R و تمتلك خاصية (ss -PD_1), فأن كل مقاس جزئي دوار في T هو اما صغيرفي T أو مجموع الى T.   

 

View Publication Preview PDF
Quick Preview PDF