Using sodium4-((4,5-diphenyl-imidazol-2-yl)diazenyl)-3-hydroxynaphthalene-1-sulfonate (SDPIHN) as a chromogenic reagent in presence of non-ionic surfactant (Triton x-100) to estimate the chromium(III) ion if the wavelength of this reagent 463 nm to form a dark greenish-brown complex in wavelength 586 nm at pH=10,the complex was stable for longer than 24 hours. Beer's low, molar absorptivity 0.244×104L.mol-1.cm-1, and Sandal's sensitivity 0.021 µg/cm2 are all observed in the concentration range 1-11 µg/mL. The limits of detection (LOD) and limit of quantification (LOQ), respectively, were 0.117 µg/mL and 0.385µg/mL. (mole ratio technique, job's method) were employed to investigate the stoichiometry of complexes, and both methods revealed that the metal to reagent ratio is equal 1:3.The absorption impact value of the reagent concentration, surfactant concentration, pH, reaction duration, temperature, addition sequences, ionic strength, masking agent, and the influence of many parameters such as affect cations and anions, among others. The influence of temperature on the reaction, which was referred to as an exothermic reaction, was also taken into account while calculating thermodynamic functions. Researchers investigated some of the complex solid's physical properties, such as solubility, molar conductivity, and melting point, as part of its development. UV-visible rays were used to investigate the chromium complex, while Relative Standard Deviation (RSD%) and Relative Error (E %) were used to assess the precision and accuracy of the novel method.
Herein, an efficient inorganic/organic hybrid photocatalyst composed of zeolitic imidazolate framework (ZIF-67) decorated with Cd0.5Zn0.5S solid solution semiconductor was constructed. The properties of prepared ZIF- [email protected] nanocomposite and its components (ZIF-67 and Cd0.5Zn0.5S) were investigated using XRD, FESEM, EDX, TEM, DRS and BET methods. The photocatalytic activity of fabricated [email protected] nanocomposite were measured toward removal of methyl violet (MV) dye as a simulated organic contaminant. Under visible-light and specific conditions (photocatalyst dose 1 g/l, MV dye 10 mg/l, unmodified solution pH 6.7 and reaction time 60 min.), the acquired [email protected] photocatalyst showed advanced photocatalytic activity
... Show MoreToday, the world is living in a time of epidemic diseases that spread unnaturally and infect and kill millions of people worldwide. The COVID-19 virus, which is one of the most well-known epidemic diseases currently spreading, has killed more than six million people as of May 2022. The World Health Organization (WHO) declared the 2019 coronavirus disease (COVID-19) after an outbreak of SARS-CoV-2 infection. COVID-19 is a severe and potentially fatal respiratory disease caused by the SARS-CoV-2 virus, which was first noticed at the end of 2019 in Wuhan city. Artificial intelligence plays a meaningful role in analyzing medical images and giving accurate results that serve healthcare workers, especially X-ray images, which are co
... Show MoreThis project aims to fabricate nanostructures (AgNPS) using the electrical exploding wire (EEW) technique using Rhodamine 6G dye as the probe molecule, investigate the effect of AgNPS on the absorption spectra and surface-enhanced Raman scattering (SERS) activities, and advance using porous silicon as an active substrate for surface-enhanced Raman scattering (SERS). X-Ray diffraction (XRD) was used to investigate the structural properties of the nanostructures (AgNPs). Field emission scanning electron microscopy (FE-SEM) was used to investigate surface morphology. A double beam UV-Vis Spectrophotometer was used to analyze the mixed R6G laser dye(of concentration 1x M) absorption spectra with the nanostructures AgNPS (of concentra
... Show More