Honeywords are fake passwords that serve as an accompaniment to the real password, which is called a “sugarword.” The honeyword system is an effective password cracking detection system designed to easily detect password cracking in order to improve the security of hashed passwords. For every user, the password file of the honeyword system will have one real hashed password accompanied by numerous fake hashed passwords. If an intruder steals the password file from the system and successfully cracks the passwords while attempting to log in to users’ accounts, the honeyword system will detect this attempt through the honeychecker. A honeychecker is an auxiliary server that distinguishes the real password from the fake passwords and triggers an alarm if intruder signs in using a honeyword. Many honeyword generation approaches have been proposed by previous research, all with limitations to their honeyword generation processes, limited success in providing all required honeyword features, and susceptibility to many honeyword issues. This work will present a novel honeyword generation method that uses a proposed discrete salp swarm algorithm. The salp swarm algorithm (SSA) is a bio-inspired metaheuristic optimization algorithm that imitates the swarming behavior of salps in their natural environment. SSA has been used to solve a variety of optimization problems. The presented honeyword generation method will improve the generation process, improve honeyword features, and overcome the issues of previous techniques. This study will demonstrate numerous previous honeyword generating strategies, describe the proposed methodology, examine the experimental results, and compare the new honeyword production method to those proposed in previous research.
One of the most interested problems that recently attracts many research investigations in Protein-protein interactions (PPI) networks is complex detection problem. Detecting natural divisions in such complex networks is proved to be extremely NP-hard problem wherein, recently, the field of Evolutionary Algorithms (EAs) reveals positive results. The contribution of this work is to introduce a heuristic operator, called protein-complex attraction and repulsion, which is especially tailored for the complex detection problem and to enable the EA to improve its detection ability. The proposed heuristic operator is designed to fine-grain the structure of a complex by dividing it into two more complexes, each being distinguished with a core pr
... Show MoreThe aim of this paper is to design feed forward neural network to determine the effects of
cold pills and cascades from simulation the problem to system of first order initial value
problem. This problem is typical of the many models of the passage of medication throughout
the body. Designer model is an important part of the process by which dosage levels are set.
A critical factor is the need to keep the levels of medication high enough to be effective, but
not so high that they are dangerous.
In the current research work, a method to reduce the color levels of the pixels within digital images was proposed. The recent strategy was based on self organization map neural network method (SOM). The efficiency of recent method was compared with the well known logarithmic methods like Floyd-Steinberg (Halftone) dithering and Octtrees (Quadtrees) methods. Experimental results have shown that by adjusting the sampling factor can produce higher-quality images with no much longer run times, or some better quality with shorter running times than existing methods. This observation refutes the repeated neural networks is necessarily slow but have best results. The generated quantization map can be exploited for color image compression, clas
... Show MoreThe aim of this paper is to approximate multidimensional functions f∈C(R^s) by developing a new type of Feedforward neural networks (FFNS) which we called it Greedy ridge function neural networks (GRGFNNS). Also, we introduce a modification to the greedy algorithm which is used to train the greedy ridge function neural networks. An error bound are introduced in Sobolov space. Finally, a comparison was made between the three algorithms (modified greedy algorithm, Backpropagation algorithm and the result in [1]).
Computer science has evolved to become the basis for evolution and entered into all areas of life where the use of computer has been developed in all scientific, military, commercial and health institutions. In addition, it has been applied in residential and industrial projects due to the high capacity and ability to achieve goals in a shorter time and less effort. In this research, the computer, its branches, and algorithms will be invested in the psychological field. In general, in psychological fields, a questionnaire model is created according to the requirements of the research topic. The model contains many questions that are answered by the individuals of the sample space chosen by the researcher. Often,
... Show MoreOffline Arabic handwritten recognition lies in a major field of challenge due to the changing styles of writing from one individual to another. It is difficult to recognize the Arabic handwritten because of the same appearance of the different characters. In this paper a proposed method for Offline Arabic handwritten recognition. The proposed method for recognition hand-written Arabic word without segmentation to sub letters based on feature extraction scale invariant feature transform (SIFT) and support vector machines (SVMs) to enhance the recognition accuracy. The proposed method experimented using (AHDB) database. The experiment result show (99.08) recognition rate.
The aim of this paper, is to discuss several high performance training algorithms fall into two main categories. The first category uses heuristic techniques, which were developed from an analysis of the performance of the standard gradient descent algorithm. The second category of fast algorithms uses standard numerical optimization techniques such as: quasi-Newton . Other aim is to solve the drawbacks related with these training algorithms and propose an efficient training algorithm for FFNN
As smartphones incorporate location data, there is a growing concern about location privacy as smartphone technologies advance. Using a remote server, the mobile applications are able to capture the current location coordinates at any time and store them. The client awards authorization to an outsider. The outsider can gain admittance to area information on the worker by JSON Web Token (JWT). Protection is giving cover to clients, access control, and secure information stockpiling. Encryption guarantees the security of the location area on the remote server using the Rivest Shamir Adleman (RSA) algorithm. This paper introduced two utilizations of cell phones (tokens, and location). The principal application can give area inf
... Show MoreThe aim of this paper is to approximate multidimensional functions by using the type of Feedforward neural networks (FFNNs) which is called Greedy radial basis function neural networks (GRBFNNs). Also, we introduce a modification to the greedy algorithm which is used to train the greedy radial basis function neural networks. An error bound are introduced in Sobolev space. Finally, a comparison was made between the three algorithms (modified greedy algorithm, Backpropagation algorithm and the result is published in [16]).
This paper presents an enhancement technique for tracking and regulating the blood glucose level for diabetic patients using an intelligent auto-tuning Proportional-Integral-Derivative PID controller. The proposed controller aims to generate the best insulin control action responsible for regulating the blood glucose level precisely, accurately, and quickly. The tuning control algorithm used the Dolphin Echolocation Optimization (DEO) algorithm for obtaining the near-optimal PID controller parameters with a proposed time domain specification performance index. The MATLAB simulation results for three different patients showed that the effectiveness and the robustness of the proposed control algorithm in terms of fast gene
... Show More