Video streaming is widely available nowadays. Moreover, since the pandemic hit all across the globe, many people stayed home and used streaming services for news, education, and entertainment. However, when streaming in session, user Quality of Experience (QoE) is unsatisfied with the video content selection while streaming on smartphone devices. Users are often irritated by unpredictable video quality format displays on their smartphone devices. In this paper, we proposed a framework video selection scheme that targets to increase QoE user satisfaction. We used a video content selection algorithm to map the video selection that satisfies the user the most regarding streaming quality. Video Content Selection (VCS) are classified into video attributes groups. The level of VCS streaming will gradually decrease to consider the least video selection that users will not accept depending on video quality. To evaluate the satisfaction level, we used the Mean Opinion Score (MOS) to measure the adaptability of user acceptance towards video streaming quality. The final results show that the proposed algorithm shows that the user satisfies the video selection, by altering the video attributes.