Preferred Language
Articles
/
bsj-6236
Optimized Artificial Neural network models to time series
...Show More Authors

        Artificial Neural networks (ANN) are powerful and effective tools in time-series applications. The first aim of this paper is to diagnose better and more efficient ANN models (Back Propagation, Radial Basis Function Neural networks (RBF), and Recurrent neural networks) in solving the linear and nonlinear time-series behavior. The second aim is dealing with finding accurate estimators as the convergence sometimes is stack in the local minima. It is one of the problems that can bias the test of the robustness of the ANN in time series forecasting. To determine the best or the optimal ANN models, forecast Skill (SS) employed to measure the efficiency of the performance of ANN models. The mean square error and the absolute mean square error were also used to measure the accuracy of the estimation for methods used. The important result obtained in this paper is that the optimal neural network was the Backpropagation (BP) and Recurrent neural networks (RNN) to solve time series, whether linear, semilinear, or non-linear. Besides, the result proved that the inefficiency and inaccuracy (failure) of RBF in solving nonlinear time series. However, RBF shows good efficiency in the case of linear or semi-linear time series only. It overcomes the problem of local minimum. The results showed improvements in the modern methods for time series forecasting.

Scopus Clarivate Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Thu Dec 01 2011
Journal Name
Journal Of Engineering
PERFORMANCE CHARACTERISTICS OF METHANOL-DIESEL BLENDS IN CI ENGINES
...Show More Authors

Owing to the energy crisis and pollution problems of today, investigations have concentrated on
decreasing fuel consumption and on lowering the concentration of toxic components in combustion
products by using non-petroleum, renewable, sustainable and non-polluting fuels. While conventional energy sources such as natural gas, oil and coal are non-renewable, alcohol can be coupled to renewable and sustainable energy sources.
In this study, the combustion characteristics of diesel fuel and methanol blends were compared.
The tests were performed at steady state conditions in a four-cylinder DI diesel engine at full load at
1500-rpm engine speed. The experimental results showed that diesel methanol blends provided
12.7% inc

... Show More
View Publication Preview PDF
Crossref
Publication Date
Sun Jun 01 2014
Journal Name
Baghdad Science Journal
Classification of fetal abnormalities based on CTG signal
...Show More Authors

The fetal heart rate (FHR) signal processing based on Artificial Neural Networks (ANN),Fuzzy Logic (FL) and frequency domain Discrete Wavelet Transform(DWT) were analysis in order to perform automatic analysis using personal computers. Cardiotocography (CTG) is a primary biophysical method of fetal monitoring. The assessment of the printed CTG traces was based on the visual analysis of patterns that describing the variability of fetal heart rate signal. Fetal heart rate data of pregnant women with pregnancy between 38 and 40 weeks of gestation were studied. The first stage in the system was to convert the cardiotocograghy (CTG) tracing in to digital series so that the system can be analyzed ,while the second stage ,the FHR time series was t

... Show More
View Publication Preview PDF
Crossref
Publication Date
Wed Sep 01 2021
Journal Name
International Journal Of Nonlinear Analysis And Application
Suggested methods for prediction using semiparametric regression function
...Show More Authors

Ferritin is a key organizer of protected deregulation, particularly below risky hyperferritinemia, by straight immune-suppressive and pro-inflammatory things. , We conclude that there is a significant association between levels of ferritin and the harshness of COVID-19. In this paper we introduce a semi- parametric method for prediction by making a combination between NN and regression models. So, two methodologies are adopted, Neural Network (NN) and regression model in design the model; the data were collected from مستشفى دار التمريض الخاص for period 11/7/2021- 23/7/2021, we have 100 person, With COVID 12 Female & 38 Male out of 50, while 26 Female & 24 Male non COVID out of 50. The input variables of the NN m

... Show More
Preview PDF
Scopus
Publication Date
Sun Feb 27 2022
Journal Name
Iraqi Journal Of Science
Plants Leaf Diseases Detection Using Deep Learning
...Show More Authors

     Agriculture improvement is a national economic issue that extremely depends on productivity. The explanation of disease detection in plants plays a significant role in the agriculture field. Accurate prediction of the plant disease can help treat the leaf as early as possible, which controls the economic loss. This paper aims to use the Image processing techniques with Convolutional Neural Network (CNN). It is one of the deep learning techniques to classify and detect plant leaf diseases. A publicly available Plant village dataset was used, which consists of 15 classes, including 12 diseases classes and 3 healthy classes.  The data augmentation techniques have been used. In addition to dropout and weight reg

... Show More
View Publication Preview PDF
Scopus (10)
Crossref (1)
Scopus Crossref
Publication Date
Sun Sep 29 2019
Journal Name
Iraqi Journal Of Science
A Design of a Hybrid Algorithm for Optical Character Recognition of Online Hand-Written Arabic Alphabets
...Show More Authors

     The growing relevance of printed and digitalized hand-written characters has necessitated the need for convalescent automatic recognition of characters in Optical Character Recognition (OCR). Among the handwritten characters, Arabic is one of those with special attention due to its distinctive nature, and the inherent challenges in its recognition systems. This distinctiveness of Arabic characters, with the difference in personal writing styles and proficiency, are complicating the effectiveness of its online handwritten recognition systems. This research, based on limitations and scope of previous related studies, studied the recognition of Arabic isolated characters through the identification o

... Show More
View Publication Preview PDF
Scopus (2)
Crossref (2)
Scopus Crossref
Publication Date
Fri Jun 30 2023
Journal Name
International Journal Of Intelligent Engineering And Systems
DeepFake Detection Improvement for Images Based on a Proposed Method for Local Binary Pattern of the Multiple-Channel Color Space
...Show More Authors

DeepFake is a concern for celebrities and everyone because it is simple to create. DeepFake images, especially high-quality ones, are difficult to detect using people, local descriptors, and current approaches. On the other hand, video manipulation detection is more accessible than an image, which many state-of-the-art systems offer. Moreover, the detection of video manipulation depends entirely on its detection through images. Many worked on DeepFake detection in images, but they had complex mathematical calculations in preprocessing steps, and many limitations, including that the face must be in front, the eyes have to be open, and the mouth should be open with the appearance of teeth, etc. Also, the accuracy of their counterfeit detectio

... Show More
View Publication Preview PDF
Scopus (3)
Crossref (1)
Scopus Crossref
Publication Date
Wed Oct 15 2014
Journal Name
International Journal Of Advanced Research
A survey/ Development of Passive Optical Access Networks Technologies
...Show More Authors

The bandwidth requirements of telecommunication network users increased rapidly during the last decades. Optical access technologies must provide the bandwidth demand for each user. The passive optical access networks (PONs) support a maximum data rate of 100 Gbps by using the Orthogonal Frequency Division Multiplexing (OFDM) technique in the optical access network. In this paper, the optical broadband access networks with many techniques from Time Division Multiplexing Passive Optical Networks (TDM PON) to Orthogonal Frequency Division Multiplex Passive Optical Networks (OFDM PON) are presented. The architectures, advantages, disadvantages, and main parameters of these optical access networks are discussed and reported which have many ad

... Show More
View Publication Preview PDF
Publication Date
Tue Dec 26 2017
Journal Name
Al-khwarizmi Engineering Journal
Experimental Study of the Effect of Exhaust Gas Recirculation (EGR) and Injection Timing on Emitted Emissions at Idle Period
...Show More Authors

Abstract

Heavy-duty diesel vehicle idling consumes fossil fuel and reduces atmospheric quality at idle period, but its restriction cannot simply be proscribed. A comprehensive tailpipe emissions database to describe idling impacts is not yet available. This paper presents a substantial data set that incorporates results from DI multi-cylinders Fiat diesel engine. Idle emissions of CO, hydrocarbon (HC), oxides of nitrogen (NOx), smoke opacity, carbon dioxide (CO2) and noise have been reported, when three EGR ratios (10, 20 and 30%) were added to suction manifold.

CO2 concentrations increased with increasing idle time and engine idle speed, but it didn’t show clear effect for IT adva

... Show More
View Publication Preview PDF
Publication Date
Mon Jun 01 2015
Journal Name
Journal Of Engineering
Unity Sliding Mode Controller Design for Active Magnetic Bearings System
...Show More Authors

Active Magnetic Bearings (AMBs) are progressively being implemented in a wide variety of applications. Their exclusive appealing features make them suitable for solving traditional rotor-bearing problems using novel design approaches for rotating machinery.  In this paper, a linearized uncertain model of AMBs is utilized to develop a nonlinear sliding mode controller based on Lyapunov function for the electromechanical system. The controller requires measurements of the rotor displacements and their derivatives. Since the control law is discontinuous, the proposed controller can achieve a finite time regulation but with the drawback of the chattering problem. To reduce the effect of this problem, the gain of the uni

... Show More
View Publication Preview PDF
Publication Date
Wed Mar 08 2017
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Mesomorphic and Dielectric Properties of Heterocyclic Liquid Crystals with Different Terminal Groups
...Show More Authors

  A new hetrocyclic liquid crystal compounds containing 1,3,4-oxadiazole with different substituted in para position (Bromo, Chloro, Nitro and Methyl) were synthesized and characterized by melting points, FTIR Spectroscopy and 1HNMR spectroscopy for [Cl-SR6] and [NO2-SR6] compounds. The liquid crystalline properties of the synthesized compounds were studied by using hot-stage polarizing optical microscopy (POM), so they determined the transition enthalpies and entropies by using differential scanning calorimetery (DSC). All of the compounds show mesomorphic properties. The compounds [Br-SR6], [Cl-SR6] and [NO2SR6] exhibit an enantiotropic dimorphism smectic (Sm) phase, while the compounds [MeSR6] showed nematic (N) phase throw cooli

... Show More
View Publication Preview PDF