There is various human biometrics used nowadays, one of the most important of these biometrics is the face. Many techniques have been suggested for face recognition, but they still face a variety of challenges for recognizing faces in images captured in the uncontrolled environment, and for real-life applications. Some of these challenges are pose variation, occlusion, facial expression, illumination, bad lighting, and image quality. New techniques are updating continuously. In this paper, the singular value decomposition is used to extract the features matrix for face recognition and classification. The input color image is converted into a grayscale image and then transformed into a local ternary pattern before splitting the image into the main sixteen blocks. Each block of these sixteen blocks is divided into more to thirty sub-blocks. For each sub-block, the SVD transformation is applied, and the norm of the diagonal matrix is calculated, which is used to create the 16x30 feature matrix. The sub-blocks of two images, (thirty elements in the main block) are compared with others using the Euclidean distance. The minimum value for each main block is selected to be one feature input to the neural network. Classification is implemented by a backpropagation neural network, where a 16-feature matrix is used as input to the neural network. The performance of the current proposal was up to 97% when using the FEI (Brazilian) database. Moreover, the performance of this study is promised when compared with recent state-of-the-art approaches and it solves some of the challenges such as illumination and facial expression.
Based on analyzing the properties of Bernstein polynomials, the extended orthonormal Bernstein polynomials, defined on the interval [0, 1] for n=7 is achieved. Another method for computing operational matrices of derivative and integration D_b and R_(n+1)^B respectively is presented. Also the result of the proposed method is compared with true answers to show the convergence and advantages of the new method.
Over the past few decades, the surveying fieldworks were usually carried out based on classical positioning methods for establishing horizontal and vertical geodetic networks. However, these conventional positioning techniques have many drawbacks such as time-consuming, too costly, and require massive effort. Thus, the Global Navigation Satellite System (GNSS) has been invented to fulfill the quickness, increase the accuracy, and overcome all the difficulties inherent in almost every surveying fieldwork. This research assesses the accuracy of local geodetic networks using different Global Navigation Satellite System (GNSS) techniques, such as Static, Precise Point Positioning, Post Processing Kinematic, Session method, a
... Show MoreThe main objective of this work is to propose a new routing protocol for wireless sensor network employed to serve IoT systems. The routing protocol has to adapt with different requirements in order to enhance the performance of IoT applications. The link quality, node depth and energy are used as metrics to make routing decisions. Comparison with other protocols is essential to show the improvements achieved by this work, thus protocols designed to serve the same purpose such as AODV, REL and LABILE are chosen to compare the proposed routing protocol with. To add integrative and holistic, some of important features are added and tested such as actuating and mobility. These features are greatly required by some of IoT applications and im
... Show MoreDue to the significant role in understanding cellular processes, the decomposition of Protein-Protein Interaction (PPI) networks into essential building blocks, or complexes, has received much attention for functional bioinformatics research in recent years. One of the well-known bi-clustering descriptors for identifying communities and complexes in complex networks, such as PPI networks, is modularity function. The contribution of this paper is to introduce heuristic optimization models that can collaborate with the modularity function to improve its detection ability. The definitions of the formulated heuristics are based on nodes and different levels of their neighbor properties. The modulari
... Show Moreيتمتع العراق بموارد بشرية هائلة حيث يعد من البلدان الفتية، إلا أنه يعاني من أزمة رأس مال بشري تغذيها أزمة التعليم، ولكون التعليم أبرز مكونات رأس المال البشري فقد ذلك بشكل كبير على مؤشر رأس المال البشري في العراق، من هذا المنطلق وللدور الكبير الذي يلعبه الانفاق العام في أي مجال، جاءت هذه الدراسة للبحث في موضوع "الانفاق العام على التعليم ودوره في تحسين مؤشرات راس المال البشري التعليمية في العراق"، حيث هدف ه
... Show Moreهناك عوامل عديدة تؤثر في البنية الشكلية للم ا ركز الحضرية التي تشهد تحولات وبصورة مستمرة ومع
توسع المدينة ونموها تفقد هذه الم ا ركز لمقومات بنيتها الحضرية المتكاملة بسبب تلك التحولات الحاصلة
ضمنه وبصورة ديناميكية من اضافات وتغيرات في النمط الحضري الذي يتشكل من عدة نماذج معمارية
جديدة مؤثرة ولأجل ذلك جاء البحث لايضاح اثر هذه العلاقة بين النمط الحضري والنموذج المعماري
وتحولاته في تكاملية البنية ا
The Normalized Difference Vegetation Index (NDVI) is commonly used as a measure of land surface greenness based on the assumption that NDVI value is positively proportional to the amount of green vegetation in an image pixel area. The Normalized Difference Vegetation Index data set of Landsat based on the remote sensing information is used to estimate the area of plant cover in region west of Baghdad during 1990-2001. The results show that in the period of 1990 and 2001 the plant area in region of Baghdad increased from (44760.25) hectare to (75410.67) hectare. The vegetation area increased during the period 1990-2001, and decreases the exposed area.
Developing an efficient algorithm for automated Magnetic Resonance Imaging (MRI) segmentation to characterize tumor abnormalities in an accurate and reproducible manner is ever demanding. This paper presents an overview of the recent development and challenges of the energy minimizing active contour segmentation model called snake for the MRI. This model is successfully used in contour detection for object recognition, computer vision and graphics as well as biomedical image processing including X-ray, MRI and Ultrasound images. Snakes being deformable well-defined curves in the image domain can move under the influence of internal forces and external forces are subsequently derived from the image data. We underscore a critical appraisal
... Show MoreThe need for image compression is always renewed because of its importance in reducing the volume of data; which in turn will be stored in less space and transferred more quickly though the communication channels.
In this paper a low cost color image lossy color image compression is introduced. The RGB image data is transformed to YUV color space, then the chromatic bands U & V are down-sampled using dissemination step. The bi-orthogonal wavelet transform is used to decompose each color sub band, separately. Then, the Discrete Cosine Transform (DCT) is used to encode the Low-Low (LL) sub band. The other wavelet sub bands are coded using scalar Quantization. Also, the quad tree coding process was applied on the outcomes of DCT and
This study aims to deliver the woman’s image and to unveil on how to be introduced in the TV series. The research is based on the survey method-using content analysis tool. The research sample represented in the TV series produced by the IMN, which were displayed in 2014 and used the pattern of Margaret Gallagher to analyze the content of the series in accordance with the frame analysis theory.
The study came up with declination of the woman’s representation compared with man in Iraqi TV drama, also the study finds that the series introduced the woman according to the personal, social, political, and economic frames in a standardizing method. It focuses on the characteristics always attributed to it as showing her obedient of the