There is various human biometrics used nowadays, one of the most important of these biometrics is the face. Many techniques have been suggested for face recognition, but they still face a variety of challenges for recognizing faces in images captured in the uncontrolled environment, and for real-life applications. Some of these challenges are pose variation, occlusion, facial expression, illumination, bad lighting, and image quality. New techniques are updating continuously. In this paper, the singular value decomposition is used to extract the features matrix for face recognition and classification. The input color image is converted into a grayscale image and then transformed into a local ternary pattern before splitting the image into the main sixteen blocks. Each block of these sixteen blocks is divided into more to thirty sub-blocks. For each sub-block, the SVD transformation is applied, and the norm of the diagonal matrix is calculated, which is used to create the 16x30 feature matrix. The sub-blocks of two images, (thirty elements in the main block) are compared with others using the Euclidean distance. The minimum value for each main block is selected to be one feature input to the neural network. Classification is implemented by a backpropagation neural network, where a 16-feature matrix is used as input to the neural network. The performance of the current proposal was up to 97% when using the FEI (Brazilian) database. Moreover, the performance of this study is promised when compared with recent state-of-the-art approaches and it solves some of the challenges such as illumination and facial expression.
The process of accurate localization of the basic components of human faces (i.e., eyebrows, eyes, nose, mouth, etc.) from images is an important step in face processing techniques like face tracking, facial expression recognition or face recognition. However, it is a challenging task due to the variations in scale, orientation, pose, facial expressions, partial occlusions and lighting conditions. In the current paper, a scheme includes the method of three-hierarchal stages for facial components extraction is presented; it works regardless of illumination variance. Adaptive linear contrast enhancement methods like gamma correction and contrast stretching are used to simulate the variance in light condition among images. As testing material
... Show MoreAs result of exposure in low light-level are images with only a small number of
photons. Only the pixels in which arrive the photopulse have an intensity value
different from zero. This paper presents an easy and fast procedure for simulating
low light-level images by taking a standard well illuminated image as a reference.
The images so obtained are composed by a few illuminated pixels on a dark
background. When the number of illuminated pixels is less than 0.01% of the total
pixels number it is difficult to identify the original object.
n this study, data or X-ray images Fixable Image Transport System (FITS) of objects were analyzed, where energy was collected from the body by several sensors; each sensor receives energy within a specific range, and when energy was collected from all sensors, the image was formed carrying information about that body. The images can be transferred and stored easily. The images were analyzed using the DS9 program to obtain a spectrum for each object,an energy corresponding to the photons collected per second. This study analyzed images for two types of objects (globular and open clusters). The results showed that the five open star clusters contain roughly t
... Show MoreThis paper proposed several approaches for estimating the optical turbulence of the Earth’s atmosphere and their effect on solar images’ resolution using ground-based telescopes based on von Kárman, Kolmogorov, and modified von Kárman PSDs models. The results showed a strong correlation coefficient for the modified von Kármán model of atmospheric representation. As can be seen in the case where solar adaptive optics have been properly designed, they typically decrease aberration considerably and provide greatly improved imagery.
Images hold important information, especially in military and commercial surveillance as well as in industrial inspection and communication. Therefore, the protection of the image from abuse, unauthorized access, and damage became a significant demand. This paper introduces a new Beta chaotic map for encrypting and confusing the color image with Deoxyribonucleic Acid (DNA) sequence. First, the DNA addition operation is used for diffusing each component of the plain image. Then, a new Beta chaotic map is used for shuffling the DNA color image. In addition, two chaotic maps, namely the proposed new Beta and Sine chaotic maps, are used for key generation. Finally, the DNA XOR operation is applied between the generated key and shuffled DNA i
... Show MoreMany cinematic adaptations were produced for the Grimms’ “Little Snow-White” (1812) including Mirror Mirror movie (2012), the contemporary version adapted by Taresm Singh. Singh’s version was able to depict the modern reality of women and went against patriarchy by embracing feminist ideologies of the fourth-wave feminism. Therefore, he challenged the ideologies of the mainstream cinema dominated by the patriarchal élite’s capitalist mode of production that still adhere to the stereotyped patriarchal image of women’s ‘victimization,’ ‘objectification’ and ‘marginalization,’ which did not represent women’s modern reality anymore. This paper, however, is a qualitative study aimed to prove that the femini
... Show MoreIn this paper, we devoted to use circular shape sliding block, in image edge determination. The circular blocks have symmetrical properties in all directions for the mask points around the central mask point. Therefore, the introduced method is efficient to be use in detecting image edges, in all directions curved edges, and lines. The results exhibit a very good performance in detecting image edges, comparing with other edge detectors results.
Abstract Software-Defined Networking (commonly referred to as SDN) is a newer paradigm that develops the concept of a software-driven network by separating data and control planes. It can handle the traditional network problems. However, this excellent architecture is subjected to various security threats. One of these issues is the distributed denial of service (DDoS) attack, which is difficult to contain in this kind of software-based network. Several security solutions have been proposed recently to secure SDN against DDoS attacks. This paper aims to analyze and discuss machine learning-based systems for SDN security networks from DDoS attack. The results have indicated that the algorithms for machine learning can be used to detect DDoS
... Show MoreAssessment the actual accuracy of laboratory devices prior to first use is very important to know the capabilities of such devices and employ them in multiple domains. As the manual of the device provides information and values in laboratory conditions for the accuracy of these devices, thus the actual evaluation process is necessary.
In this paper, the accuracy of laser scanner (stonex X-300) cameras were evaluated, so that those cameras attached to the device and lead supporting role in it. This is particularly because the device manual did not contain sufficient information about those cameras.
To know the accuracy when using these cameras in close range photogrammetry, laser scanning (stonex X-300) de
... Show MoreIn this paper, we prove that our proposed localization algorithm named Improved
Accuracy Distribution localization for wireless sensor networks (IADLoc) [1] is the
best when it is compared with the other localization algorithms by introducing many
cases of studies. The IADLoc is used to minimize the error rate of localization
without any additional cost and minimum energy consumption and also
decentralized implementation. The IADLoc is a range free and also range based
localization algorithm that uses both type of antenna (directional and omnidirectional)
it allows sensors to determine their location based on the region of
intersection (ROI) when the beacon nodes send the information to the sink node and
the la