Preferred Language
Articles
/
bsj-6145
Human Face Recognition Based on Local Ternary Pattern and Singular Value Decomposition
...Show More Authors

There is various human biometrics used nowadays, one of the most important of these biometrics is the face. Many techniques have been suggested for face recognition, but they still face a variety of challenges for recognizing faces in images captured in the uncontrolled environment, and for real-life applications. Some of these challenges are pose variation, occlusion, facial expression, illumination, bad lighting, and image quality. New techniques are updating continuously. In this paper, the singular value decomposition is used to extract the features matrix for face recognition and classification. The input color image is converted into a grayscale image and then transformed into a local ternary pattern before splitting the image into the main sixteen blocks.  Each block of these sixteen blocks is divided into more to thirty sub-blocks. For each sub-block, the SVD transformation is applied, and the norm of the diagonal matrix is calculated, which is used to create the 16x30 feature matrix. The sub-blocks of two images, (thirty elements in the main block) are compared with others using the Euclidean distance.  The minimum value for each main block is selected to be one feature input to the neural network. Classification is implemented by a backpropagation neural network, where a 16-feature matrix is used as input to the neural network. The performance of the current proposal was up to 97% when using the FEI (Brazilian) database. Moreover, the performance of this study is promised when compared with recent state-of-the-art approaches and it solves some of the challenges such as illumination and facial expression.

Scopus Clarivate Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Sun Jul 09 2023
Journal Name
Journal Of Engineering
MR Brain Image Segmentation Using Spatial Fuzzy C- Means Clustering Algorithm
...Show More Authors

conventional FCM algorithm does not fully utilize the spatial information in the image. In this research, we use a FCM algorithm that incorporates spatial information into the membership function for clustering. The spatial function is the summation of the membership functions in the neighborhood of each pixel under consideration. The advantages of the method are that it is less
sensitive to noise than other techniques, and it yields regions more homogeneous than those of other methods. This technique is a powerful method for noisy image segmentation. 

View Publication Preview PDF
Crossref
Publication Date
Sat Oct 01 2022
Journal Name
Al–bahith Al–a'alami
THE IMAGE OF THE IRAQI IN THE MENTALITY OF THE ITALIANS
...Show More Authors

Increased interest in the subject of the image because of its great and growing link to the life of the individual and society and its impact on the overall political, economic and cultural conditions. This interest is no longer confined to the images of people or institutions, but has become beyond that to the images of countries and peoples and the impact on bilateral relations between them,

However, we find that the image of the Iraqi abroad remained vague and has not been scientifically recognized and the most that we can generalize are the features of the image of Arabs and Muslims abroad; and assume that the image of the Iraqi applies to them as the Iraqi is in the end an Arab or Muslim.

Based on this, the research

... Show More
View Publication Preview PDF
Crossref
Publication Date
Tue Sep 11 2018
Journal Name
Iraqi Journal Of Physics
Estimation of kidney tumor volume in CT images using medical image segmentation techniques
...Show More Authors

Kidney tumors are of different types having different characteristics and also remain challenging in the field of biomedicine. It becomes very important to detect the tumor and classify it at the early stage so that appropriate treatment can be planned. Accurate estimation of kidney tumor volume is essential for clinical diagnoses and therapeutic decisions related to renal diseases. The main objective of this research is to use the Computer-Aided Diagnosis (CAD) algorithms to help the early detection of kidney tumors that addresses the challenges of accurate kidney tumor volume estimation caused by extensive variations in kidney shape, size and orientation across subjects.
In this paper, have tried to implement an automated segmentati

... Show More
View Publication Preview PDF
Crossref
Publication Date
Thu May 03 2001
Journal Name
Master's Thesis
The image of the United States of America in the Iraqi press
...Show More Authors

Preview PDF
Publication Date
Tue Aug 15 2023
Journal Name
Journal Of Economics And Administrative Sciences
Machine Learning Techniques for Analyzing Survival Data of Breast Cancer Patients in Baghdad
...Show More Authors

The Machine learning methods, which are one of the most important branches of promising artificial intelligence, have great importance in all sciences such as engineering, medical, and also recently involved widely in statistical sciences and its various branches, including analysis of survival, as it can be considered a new branch used to estimate the survival and was parallel with parametric, nonparametric and semi-parametric methods that are widely used to estimate survival in statistical research. In this paper, the estimate of survival based on medical images of patients with breast cancer who receive their treatment in Iraqi hospitals was discussed. Three algorithms for feature extraction were explained: The first principal compone

... Show More
View Publication Preview PDF
Crossref (1)
Crossref
Publication Date
Mon Jun 01 2015
Journal Name
International Photonics And Optoelectronics
Canonical Logic Units using Bidirectional Four-Wave Mixing in Highly Nonlinear Fiber
...Show More Authors

All-optical canonical logic units at 40 Gb/s using bidirectional four-wave mixing (FWM) in highly nonlinear fiber are proposed and experimentally demonstrated. Clear temporal waveforms and correct pattern streams are successfully observed in the experiment. This scheme can reduce the amount of nonlinear devices and enlarge the computing capacity compared with general ones. The numerical simulations are made to analyze the relationship between the FWM efficiency and the position of two interactional signals. © 2015 Chinese Laser Press

View Publication
Crossref (7)
Scopus Clarivate Crossref
Publication Date
Sun Apr 29 2018
Journal Name
Iraqi Journal Of Science
Signal Processing Techniques for Diagnosis Rotor Faults in Small Wind Turbine Motor
...Show More Authors

The core objective of this paper was to diagnosis and detect the expected rotor faults in small wind turbine SWT utilize signal processing technique. This aim was achieved by acquired and analyzed the current signal of SWT motor and employed the motor current signature analysis MCSA to detect the sudden changes can have occurred during SWT operation. LabVIEW program as a virtual instrument and (NI USB 6259) DAQ were take advantage of current measurement and data processing.

View Publication Preview PDF
Publication Date
Sun Jul 17 2022
Journal Name
Al–bahith Al–a'alami
The Pocessing of Extremism’s Manifestations in the T.V Talk Shows : A Paper Extracted from A Masters Thesis
...Show More Authors

This study aims to know how and what is the media processing presented by the television talk shows for the religious extremism topics in terms of topics, hosted personalities, and ways to address this global phenomenon.

The study is based on descriptive research, and the researcher used the analytical-survey method, analyzing the episodes of (Awkar Al Dhalam) T.V Show which was presented on Al-Iraqiya News Channel, and (Islam Hur) T.V Show which was presented on Al-Hurra in 2019 with 25 episodes from each Show, The sample and research community was chosen with the intent to cover the research problem and its

The study reached several conclusions, including:

  • The various dialogs in the episo

... Show More
View Publication Preview PDF
Crossref (1)
Crossref
Publication Date
Sat Dec 02 2023
Journal Name
Journal Of Engineering
Deep Learning of Diabetic Retinopathy Classification in Fundus Images
...Show More Authors

Diabetic retinopathy is an eye disease in diabetic patients due to damage to the small blood vessels in the retina due to high and low blood sugar levels. Accurate detection and classification of Diabetic Retinopathy is an important task in computer-aided diagnosis, especially when planning for diabetic retinopathy surgery. Therefore, this study aims to design an automated model based on deep learning, which helps ophthalmologists detect and classify diabetic retinopathy severity through fundus images. In this work, a deep convolutional neural network (CNN) with transfer learning and fine tunes has been proposed by using pre-trained networks known as Residual Network-50 (ResNet-50). The overall framework of the proposed

... Show More
View Publication Preview PDF
Crossref (1)
Crossref
Publication Date
Mon Dec 03 2018
Journal Name
Journal Of Engineering
Biotreatment of Actual Potato Chips Processing Wastewater with Electricity Generation in Microbial Fuel Cell
...Show More Authors

This study aimed to investigate the feasibility of treatment actual potato chips processing wastewater in a continuously operated dual chambers microbial fuel cell (MFC) inoculated with anaerobic sludge. The results demonstrated significant removal of COD and suspended solids of more than 99% associated with relatively high generation of current and power densities of 612.5 mW/m3 and 1750 mA/m3, respectively at 100 Ω external resistance.

 

View Publication Preview PDF
Crossref