Organophosphorus insecticide and growth regulator namely Ethephon (2-chloroethylphosphonic acid) are widely used as a ripening process accelerator and a cultivation duration inhibitor. Pomegranate extract (PPE) has recently been taken into consideration due to its pharmacological effects especially those associated with renal diseases. Thus, this study aims to investigate the possible protective effect of PPE against ethephon-induced nephrotoxicity in rats. In this study four groups of adult male rats were divided into control group, PPE 400 mg/kg group, Ethephon 250 mg/kg group, and finally, PPE + Ethephon group (treated with the same dose of PPE group and Ethephon group). In the current study, kidney function parameters (KIM-1, creatinine, and urea) along with oxidative stress markers, heme oxygenase-1 (HO-1) and nuclear factor erythroid 2–related factor 2 (Nrf2), glutathione (GSH) and its correlated enzymes, nitric oxide (NO), superoxide dismutase (SOD), malondialdehyde (MDA) and catalase (CAT) were estimated. Additionally, mediators of renal inflammation: interleukin 1 beta (IL-1β), tumor necrosis factor-alpha (TNF-α), nuclear factor kappa B (NF-κB) were measured. Apoptotic biomarkers (Bax, caspase 3, and Bcl2) in addition to renal histopathological data were also investigated. Results revealed that Ethephon elicited a significant increase in oxidation markers and reduced antioxidant levels, accompanied by oxidative renal tissue injury. Consequently, administration of Ethephon was reported to provoke secretion of the pro-inflammatory mediators. Moreover, histopathological results showed that deformities in the renal tissues were noticed which is attributed to Ethephon exposure. Interestingly, co-administration of PPE and Ethephon resulted in significantly ameliorated the biochemical and histopathological alterations produced by Ethephon. Current results propose the potential effect of PPE in the protection of renal tissue from Ethephon induced nephrotoxicity in rats.
In this work a model of a source generating truly random quadrature phase shift keying (QPSK) signal constellation required for quantum key distribution (QKD) system based on BB84 protocol using phase coding is implemented by using the software package OPTISYSTEM9. The randomness of the sequence generated is achieved by building an optical setup based on a weak laser source, beam splitters and single-photon avalanche photodiodes operating in Geiger mode. The random string obtained from the optical setup is used to generate the quadrature phase shift keying signal constellation required for phase coding in quantum key distribution system based on BB84 protocol with a bit rate of 2GHz/s.
In this paper, an intelligent tracking control system of both single- and double-axis Piezoelectric Micropositioner stage is designed using Genetic Algorithms (GAs) method for the optimal Proportional-Integral-Derivative (PID) controller tuning parameters. The (GA)-based PID control design approach is a methodology to tune a (PID) controller in an optimal control sense with respect to specified objective function. By using the (GA)-based PID control approach, the high-performance trajectory tracking responses of the Piezoelectric Micropositioner stage can be obtained. The (GA) code was built and the simulation results were obtained using MATLAB environment. The Piezoelectric Micropositioner simulation model with th
... Show MoreIn this research various of 2,5-disubstituted 1,3,4-oxadiazole (Schiff base, oxo-thiazolidine , and other compounds) were synthesized from 2,5-di(4,4?- amino-1,3,4-oxadiazole ) which use quently synthesized from mixture of 4-amino benzoic acid and hydrazine in the presence of polyphosphorus acid. The synthesized compounds were characterized by using some Spectral data (UV, FT-IR, and 1H-NMR).
Improved oral bioavailability of lipophilic substances can be achieved using self-emulsifying drug delivery systems. However, because the properties of self-emulsifying are greatly influenced by surfactant amount and type, type of oil used, droplet size, charge, cosolvents, and physiological variables, the synthesis of self-emulsifying is highly complex; consequently, only a small number of excipient self-emulsifying formulations has been developed so far for clinical use. This study reports a highly effective procedure for developing self-emulsifying formulations using a novel approach based on the hydrophilic-lipophilic difference theory. Microemulsion characteristics, such as the constituents and amounts of oil and surfactant electrolyte
... Show MoreIn this work, an efficient energy management (EEM) approach is proposed to merge IoT technology to enhance electric smart meters by working together to satisfy the best result of the electricity customer's consumption. This proposed system is called an integrated Internet of things for electrical smart meter (2IOT-ESM) architecture. The electric smart meter (ESM) is the first and most important technique used to measure the active power, current, and energy consumption for the house’s loads. At the same time, the effectiveness of this work includes equipping ESM with an additional storage capacity that ensures that the measurements are not lost in the event of a failure or sudden outage in WiFi network. Then then these
... Show MoreShear wave velocity is an important feature in the seismic exploration that could be utilized in reservoir development strategy and characterization. Its vital applications in petrophysics, seismic, and geomechanics to predict rock elastic and inelastic properties are essential elements of good stability and fracturing orientation, identification of matrix mineral and gas-bearing formations. However, the shear wave velocity that is usually obtained from core analysis which is an expensive and time-consuming process and dipole sonic imager tool is not commonly available in all wells. In this study, a statistical method is presented to predict shear wave velocity from wireline log data. The model concentrated to predict shear wave velocity fr
... Show More