Scheduling Timetables for courses in the big departments in the universities is a very hard problem and is often be solved by many previous works although results are partially optimal. This work implements the principle of an evolutionary algorithm by using genetic theories to solve the timetabling problem to get a random and full optimal timetable with the ability to generate a multi-solution timetable for each stage in the collage. The major idea is to generate course timetables automatically while discovering the area of constraints to get an optimal and flexible schedule with no redundancy through the change of a viable course timetable. The main contribution in this work is indicated by increasing the flexibility of generating optimal timetable schedules with different copies by increasing the probability of giving the best schedule for each stage in the campus with the ability to replace the timetable when needed. The Evolutionary Algorithm (EA) utilized in this paper is the Genetic Algorithm (GA) which is a common multi-solution metaheuristic search based on the evolutionary population that can be applied to solve complex combinatorial problems like timetabling problems. In this work, all inputs: courses, teachers, and time acted by one array to achieve local search and combined this acting of the timetable by using the heuristic crossover to ensure that the essential conditions are not broken. The result of this work is a flexible scheduling system, which shows the diversity of all possible timetables that can be created depending on user conditions and needs.
Steganography is one of the most popular techniques for data hiding in the different media such as images, audio or video files. This paper introduced the improved technique to hide the secret message using the LSB algorithm inside the RGB true color image by encrypting it using the secret key transformation function. The key is selecting randomly in the GF (2n) with condition it has an inverse value to retrieve the encrypted message. Only two bits are used for the low byte in each pixel (the blue byte) to hide the secret message, since the blue color has a weak effect on human eyes. The message hidden by the suggested algorithm is less vulnerable to be stolen than other similar applications.
The Fuzzy Logic method was implemented to detect and recognize English numbers in this paper. The extracted features within this method make the detection easy and accurate. These features depend on the crossing point of two vertical lines with one horizontal line to be used from the Fuzzy logic method, as shown by the Matlab code in this study. The font types are Times New Roman, Arial, Calabria, Arabic, and Andalus with different font sizes of 10, 16, 22, 28, 36, 42, 50 and 72. These numbers are isolated automatically with the designed algorithm, for which the code is also presented. The number’s image is tested with the Fuzzy algorithm depending on six-block properties only. Groups of regions (High, Medium, and Lo
... Show More<span>Dust is a common cause of health risks and also a cause of climate change, one of the most threatening problems to humans. In the recent decade, climate change in Iraq, typified by increased droughts and deserts, has generated numerous environmental issues. This study forecasts dust in five central Iraqi districts using machine learning and five regression algorithm supervised learning system framework. It was assessed using an Iraqi meteorological organization and seismology (IMOS) dataset. Simulation results show that the gradient boosting regressor (GBR) has a mean square error of 8.345 and a total accuracy ratio of 91.65%. Moreover, the results show that the decision tree (DT), where the mean square error is 8.965, c
... Show MoreIn this paper we introduce a brief review about Box-Jenkins models. The acronym ARIMA stands for “autoregressive integrated moving averageâ€. It is a good method to forecast for stationary and non stationary time series. According to the data which obtained from Baghdad Water Authority, we are modelling two series, the first one about pure water consumption and the second about the number of participants. Then we determine an optimal model by depending on choosing minimum MSE as criterion.
In this paper, the Azzallini’s method used to find a weighted distribution derived from the standard Pareto distribution of type I (SPDTI) by inserting the shape parameter (θ) resulting from the above method to cover the period (0, 1] which was neglected by the standard distribution. Thus, the proposed distribution is a modification to the Pareto distribution of the first type, where the probability of the random variable lies within the period The properties of the modified weighted Pareto distribution of the type I (MWPDTI) as the probability density function ,cumulative distribution function, Reliability function , Moment and the hazard function are found. The behaviour of probability density function for MWPDTI distrib
... Show MoreThe objective of this paper is to show modern class of open sets which is an -open. Some functions via this concept were studied and the relationships such as continuous function strongly -continuous function -irresolute function -continuous function.
In this paper, compared eight methods for generating the initial value and the impact of these methods to estimate the parameter of a autoregressive model, as was the use of three of the most popular methods to estimate the model and the most commonly used by researchers MLL method, Barg method and the least squares method and that using the method of simulation model first order autoregressive through the design of a number of simulation experiments and the different sizes of the samples.
In a recent study, a special type of plane overpartitions known as k-rowed plane overpartitions has been studied. The function denotes the number of plane overpartitions of n with a number of rows at most k. In this paper, we prove two identities modulo 8 and 16 for the plane overpartitions with at most two rows. We completely specify the modulo 8. Our technique is based on expanding each term of the infinite product of the generating function of the modulus 8 and 16 and in which the proofs of the key results are dominated by an intriguing relationship between the overpartitions and the sum of divisors, which reveals a considerable link among these functions modulo powers of 2.
Ab – initio density function theory (DFT) calculations coupled with Large Unit Cell (LUC) method were carried out to evaluate the electronic structure properties of III-V zinc blend (GaAs). The nano – scale that have dimension (1.56-2.04)nm. The Gaussian 03 computational packages has been employed through out this study to compute the electronic properties include lattice constant, energy gap, valence and conduction band width, total energy, cohesive energy and density of state etc. Results show that the total energy and energy gap are decreasing with increase the size of nano crystal . Results revealed that electronic properties converge to some limit as the size of LUC increase .
Complex-valued regular functions that are normalized in the open unit disk are vastly studied. The current study introduces a new fractional integrodifferential (non-linear) operator. Based on the pre-Schwarzian derivative, certain appropriate stipulations on the parameters included in this con-structed operator to be univalent and bounded are investigated and determined.