In this research we solved numerically Boltzmann transport equation in order to calculate the transport parameters, such as, drift velocity, W, D/? (ratio of diffusion coefficient to the mobility) and momentum transfer collision frequency ?m, for purpose of determination of magnetic drift velocity WM and magnetic deflection coefficient ? for low energy electrons, that moves in the electric field E, crossed with magnetic field B, i.e; E×B, in the nitrogen, Argon, Helium and it's gases mixtures as a function of: E/N (ratio of electric field strength to the number density of gas), E/P300 (ratio of electric field strength to the gas pressure) and D/? which covered a different ranges for E/P300 at temperatures 300°k (Kelvin). The results showed had been tabulated and graphically represented as functions of their variables. These results a satisfactory agreement between experimental values and theoretical data given in the literature showed.
In this paper, author’s study sub diffusion bio heat transfer model and developed explicit finite difference scheme for time fractional sub diffusion bio heat transfer equation by using caputo fabrizio fractional derivative. Also discussed conditional stability and convergence of developed scheme. Furthermore numerical solution of time fractional sub diffusion bio heat transfer equation is obtained and it is represented graphically by Python.
The aim of this study to investigate the tongue morphology and histology in house gecko Hemidactylus flaviviridis using light and scanning electron –microscopy (SEM ) technique.The morphology result revealed the presence of three parts : apex , body and lingual root .The light microscopy result showed that the tongue is covered with mucous membrane composed of non keratinized stratified squamous epithelium based on lamina propria which contain bundles of striated muscles its fibers in different directions including connective tissue , blood vessels and nerves. The lingual mucosa of the dorsal surface is covered with different pattern of lingual papillae which are widely distributed all over the dorsal surface except the apex. Noticed on t
... Show MoreA theoretical calculations of the rate constant of electron transfer (ET) in a dye – semiconductor system with variety solvent are applied on system contains safranineT dye with TiO2 in many solvents like water, 1-propanol, Formamide, Acetonitrile and Ethanol.
A matlap program has been written to evaluate many parameters such that, the solvent reorganization energy, effective free energy, activation free energy, coupling matrix element and the rate constant of electron transfer.
The results of the rate constant of electron transfer calculated theoretically are in a good agreement with experimental and theoretical value
... Show MoreMany species are resistant to heavy metals in their surrounding polluted environment and Staphylococcus sp. is an example. This study aimed to isolate and characterize bacteria resistant to heavy metals in the Shatt Al-Arab River in southern Basra, Iraq. Based on the morphology and using Vitek II system, and due to their high resistance to heavy metals (mercury and chromium), two species of Staphylococcus (Staphylococcus lentus and Staphylococcus lugdunensis) were chosen and isolated. The minimum inhibitory concentration (MIC) of the isolates against Hg and Cr was determined after 72 h. of incubation in solid media. All isolates were resistant to Hg (2000 mgL-1) and Cr (4000mgL
... Show MoreAn effective two-body density operator for point nucleon system
folded with the tenser force correlations( TC's), is produced and used
to derive an explicit form for ground state two-body charge density
distributions (2BCDD's) applicable for 25Mg, 27Al and 29Si nuclei. It is
found that the inclusion of the two-body TC's has the feature of
increasing the central part of the 2BCDD's significantly and reducing
the tail part of them slightly, i.e. it tends to increase the probability of
transferring the protons from the surface of the nucleus towards its
centeral region and consequently makes the nucleus to be more rigid
than the case when there is no TC's and also leads to decrease the
1/ 2
r 2 of the nucleu
Due to the scientific and technical development in the free electron laser devices and the accompanying industrial and technological progress in various fields of civil and military life, it became necessary to expand the understanding of the mechanism of interaction of electrons (as an effective medium) with the magnetic field that they pass through to form coherent photons.
In this paper, the Lorentz force effect is simulated and analysed. The results showed that the Lorentz force originates from the magnetic field, making the electron move through it oscillate. This sinusoidal motion of the electron causes it to emit two photons for every electron wavelength. It has been concluded that the electron velocity directly affe
... Show MoreThe total and individual multipole moments of magnetic electron scattering form factors in 41Ca have been investigated using a widely successful model which is the nuclear shell model configurations keeping in mind of 1f7/2 subshell as an L-S shell and Millinar, Baymann, Zamick as L-S shell (F7MBZ) to give the model space wave vector. Also, harmonic oscillator wave functions have been used as wave function of a single particle in 1f7/2 shell. Nucleus 40Ca as core closed and Core polarization effects have been used as a corrective with first order correction concept to basic computation of L-S shell and the excitement energy has been implemented with 2ћω. The
... Show MoreInelastic longitudinal electron scattering form factors to 2+ and 4+ states in 65Cu nucleus has been calculated in the (2p3/2 1f 5/2 2p1/2) shell model space with the F5PVH effective interaction. The harmonic oscillator potential has been applied to calculate the wave functions of radial single-particle matrix elements. Two shell model codes, CP and NUSHELL are used to obtain results. The form factor of inelastic electron scattering to 1/21−, 1/22−, 3/22−, 3/23−, 5/21−, 5/22− and 7/2- states and finding the transition probabilities B (C2) (in units of e2 fm4) for these transitions and B (C4) (in units of e2 fm8) for the transition 7/2-, and comparing them with experimental data. Both the form factors and reduced transition pr
... Show MoreInelastic longitudinal electron scattering form factors for second
excited state C42 in 42Ti nucleus have been calculated using shell
model theory. Fp shell model space with configuration (1f7/2 2p3/2
1f5/2 2p1/2) has been adopted in order to distribute the valence
particles (protons and neutrons) outside an inert core 40Ca. Modern
model space effective interactions like FPD6 and GXPF1 have been
used to generate model space vectors and harmonic oscillator wave
function as a single particle wave function. Discarder space (core
orbits + higher orbits) has been included in (core polarization effect)
as a first order correction in microscopic theory to measure the
interested multipole form factors via the model
Total Electron Content measurements derived from Athens station ionograms (ITEC),
located near Iraq, during the ascending phase of solar cycle 24 (July 2009- April 2010),
according to availability of data, are compared with the latest version of the International
Reference Ionosphere model, IRI-2012 (IRI TEC), using two options (NeQuick, IRI01-
Corr) for topside electron density.
The results obtained from both (ITEC and IRI TEC) techniques were similar, where
correlation coefficients between them are very high. Generally, the IRI predictions
overestimate the ITEC values.