There is a great deal of systems dealing with image processing that are being used and developed on a daily basis. Those systems need the deployment of some basic operations such as detecting the Regions of Interest and matching those regions, in addition to the description of their properties. Those operations play a significant role in decision making which is necessary for the next operations depending on the assigned task. In order to accomplish those tasks, various algorithms have been introduced throughout years. One of the most popular algorithms is the Scale Invariant Feature Transform (SIFT). The efficiency of this algorithm is its performance in the process of detection and property description, and that is due to the fact that it operates on a big number of key-points, the only drawback it has is that it is rather time consuming. In the suggested approach, the system deploys SIFT to perform its basic tasks of matching and description is focused on minimizing the number of key-points which is performed via applying Fast Approximate Nearest Neighbor algorithm, which will reduce the redundancy of matching leading to speeding up the process. The proposed application has been evaluated in terms of two criteria which are time and accuracy, and has accomplished a percentage of accuracy of up to 100%, in addition to speeding up the processes of matching and description.
عملية تغيير حجم الصورة في مجال معالجة الصور باستخدام التحويلات الهندسية بدون تغيير دقة الصورة تعرف ب image scaling او image resizing. عملية تغيير حجم الصورة لها تطبيقات واسعة في مجال الحاسوب والهاتف النقال والاجهزة الالكترونية الاخرى. يقترح هذا البحث طريقة لتغيير حجم الصورة باستخدام المعادلات الخاصة بمنحني Bezier وكيفية الحصول على افضل نتائج. تم استخدام Bezier curve في اعمال سابقة في مجالات مختلفة ولكن في هذا البحث تم استخد
... Show MoreThis paper introduced a hybrid technique for lossless image compression of natural and medical images; it is based on integrating the bit plane slicing and Wavelet transform along with a mixed polynomial of linear and non linear base. The experiments showed high compression performance with fully grunted reconstruction.
The advancements in Information and Communication Technology (ICT), within the previous decades, has significantly changed people’s transmit or store their information over the Internet or networks. So, one of the main challenges is to keep these information safe against attacks. Many researchers and institutions realized the importance and benefits of cryptography in achieving the efficiency and effectiveness of various aspects of secure communication.This work adopts a novel technique for secure data cryptosystem based on chaos theory. The proposed algorithm generate 2-Dimensional key matrix having the same dimensions of the original image that includes random numbers obtained from the 1-Dimensional logistic chaotic map for given con
... Show MoreThe revolution of multimedia has been a driving force behind fast and secured data transmission techniques. The security of image information from unapproved access is imperative. Encryptions technique is used to transfer data, where each kind of data has its own special elements; thus various methods should to be used to conserve distributing the image. This paper produces image encryption improvements based on proposed an approach to generate efficient intelligent session (mask keys) based on investigates from the combination between robust feature for ECC algebra and construction level in Greedy Randomized Adaptive Search Procedure (GRASP) to produce durable symmetric session mask keys consist of ECC points. Symmetric behavior for ECC
... Show MoreThe current research deals with the dialectical relationship resulting from the conflict in the violent combination and construction of the living ( the actor)and the dead (the item) in the structure of the Sinography construction and the emergence of the theatrical play space , which can be summed up by the following question: what is the nature of the dialectical relationship between the living (the actor) and the dead( the item) in the Sinography creation, which limited the research in a central objective : to identify the controversy of the living (actor) and the dead (item) in the performance unit of the theatrical scene . The research, in its objective limits set forth in its methodological framework, analyzes this controversy in o
... Show MoreNowadays, the advances in information and communication technologies open the wide door to realize the digital world’s dream. Besides, within the clear scientific scope in all fields, especially the medical field, it has become necessary to harness all the scientific capabilities to serve people, especially in medical-related services. The medical images represent the basis of clinical diagnosis and the source of telehealth and teleconsultation processes. The exchange of these images can be subject to several challenges, such as transmission bandwidth, time delivery, fraud, tampering, modifying, privacy, and more. This paper will introduce an algorithm consisting a combination of compression and encryption techniques to meet such chall
... Show MoreSemantic segmentation is an exciting research topic in medical image analysis because it aims to detect objects in medical images. In recent years, approaches based on deep learning have shown a more reliable performance than traditional approaches in medical image segmentation. The U-Net network is one of the most successful end-to-end convolutional neural networks (CNNs) presented for medical image segmentation. This paper proposes a multiscale Residual Dilated convolution neural network (MSRD-UNet) based on U-Net. MSRD-UNet replaced the traditional convolution block with a novel deeper block that fuses multi-layer features using dilated and residual convolution. In addition, the squeeze and execution attention mechanism (SE) and the s
... Show MoreIn this research, we propose to use two local search methods (LSM's); Particle Swarm Optimization (PSO) and the Bees Algorithm (BA) to solve Multi-Criteria Travelling Salesman Problem (MCTSP) to obtain the best efficient solutions. The generating process of the population of the proposed LSM's may be randomly obtained or by adding some initial solutions obtained from some efficient heuristic methods. The obtained solutions of the PSO and BA are compared with the solutions of the exact methods (complete enumeration and branch and bound methods) and some heuristic methods. The results proved the efficiency of PSO and BA methods for a large number of nodes ( ). The proposed LSM's give the best efficient solutions for the MCTSP for
... Show MoreThe combination of wavelet theory and neural networks has lead to the development of wavelet networks. Wavelet networks are feed-forward neural networks using wavelets as activation function. Wavelets networks have been used in classification and identification problems with some success.
In this work we proposed a fuzzy wavenet network (FWN), which learns by common back-propagation algorithm to classify medical images. The library of medical image has been analyzed, first. Second, Two experimental tables’ rules provide an excellent opportunity to test the ability of fuzzy wavenet network due to the high level of information variability often experienced with this type of images.
&n
... Show MoreA principal problem of any internet user is the increasing number of spam, which became a great problem today. Therefore, spam filtering has become a research fo-cus that attracts the attention of several security researchers and practitioners. Spam filtering can be viewed as a two-class classification problem. To this end, this paper proposes a spam filtering approach based on Possibilistic c-Means (PCM) algorithm and weighted distance coined as (WFCM) that can efficiently distinguish between spam and legitimate email messages. The objective of the formulated fuzzy problem is to construct two fuzzy clusters: spam and email clusters. The weight assignment is set by information gain algorithm. Experimental results on spam based benchmark
... Show More