Sansevieriatrifasciata was studied as a potential biosorbent for chromium, copper and nickel removal in batch process from electroplating and tannery effluents. Different parameters influencing the biosorption process such as pH, contact time, and amount of biosorbent were optimized while using the 80 mm sized particles of the biosorbent. As high as 91.3 % Ni and 92.7 % Cu were removed at pH of 6 and 4.5 respectively, while optimum Cr removal of 91.34 % from electroplating and 94.6 % from tannery effluents was found at pH 6.0 and 4.0 respectively. Pseudo second order model was found to best fit the kinetic data for all the metals as evidenced by their greater R2 values. FTIR characterization of biosorbent revealed the presence of carboxyl and hydroxyl groups on its surface that were responsible for metal uptake. The data for Cr removal from both the effluents was best explained by Langmuir model, while data for Ni and Cu removal was best fitted to Freundlich isotherm. Moreover, 84% biosorbent was recovered on desorption
Glassy carbon electrode (GCE) was modified with carbon nanotubes CNT and C60 by attachment and solution evaporation techniques, respectively. CNT/Li+/GCE and C60/Li+/GCE were prepared by modifying CNT/GCE and C60/GCE in Li+ solution via cyclic voltammetry (CV) potential cycling. The sensing characteristics of the modified film electrodes, demonstrated in this study for interference of Mn2+ in different heavy metals ion esp. Hg2+, Cd2+ and Cu2+. The interfering effect was investigated that exert positive interference on the redox peaks of Mn2+. The modification of GCE with nano materials and Li+ act an enhancement for the redox current peaks to observe the effect of interference for Mn2+ in 1:1 ratio with different heavy metals ion.
The reaction of [Benzoyl hydrazine] with [Diphenyl mono oxime] and Glacial acetic acid was carried out in methanol gave a new tridentate ligand [Benzoic acid (2-hydroxyimino- 1, 2-diphyneylethylidene) - hydrazide]. This ligand was reacted with some metal ions (Fe(II), Co(II), Ni(II), and Cu(II)) in methanol with (1:1) metal : ligand ratio to give a series of new complexes of the general formula [M(L)Cl2.H2O], where M= Fe(11), Co(11), Ni(11) and Cu(11). All compounds were characterized by spectroscopic methods (I.R, UV-Vis), elemental microanalysis (C.H.N), atomic absorption, magnetic susceptibility, and conductivity measurements. From the obtained data the proposed molecular structures were suggested for the complexes of Fe
... Show MoreA new Mannich base ligand was prepared by reacting the 2-chloro.-N-(5-mercapto-1, 3, 4-thiadazol -2-yl) acetamide and Piperidine in the presence (formaldehyde) (L) ligand. A series of ligand complexes were prepared from (L) with the metal ion Co (II), Ni (II), Cu (II), Pd (II), Pt (IV), and Au (III). Various spectroscopic techniques such as C.H.N.S, FTIR, UV-VIS, , 1HNMR, 13CNMR, Magnetic moment, and molar conductivity successfully characterize the obtained compounds. The M: L ratio was determined using the molar ratio method in solution. All prepared compounds' antibacterial and antifungal activity was studied against two types of bacteria and one type of fungi at a rate of 0.02M. The standard ΔH°
... Show MoreThe reaction of [Benzoyl hydrazine] with [Diphenyl mono oxime] and Glacial acetic acid was carried out in methanol gave a new tridentate ligand [Benzoic acid (2- hydroxyimino- 1, 2-diphyneylethylidene) - hydrazide]. This ligand was reacted with some metal ions (Fe(II), Co(II), Ni(II), and Cu(II)) in methanol with (1:1) metal : ligand ratio to give a series of new complexes of the general formula [M(L)Cl2.H2O], where M= Fe(11), Co(11), Ni(11) and Cu(11) . All compounds were characterized by spectroscopic methods (I.R, UV-Vis), elemental microanalysis (C.H.N), atomic absorption, magnetic susceptibility, and conductivity measurements. From the obtained data the proposed molecular structures were suggested for the complexes of Fe (II), Co (II)
... Show MoreA new Schiff base ligand [L] [3-methyl-9,10 phenyl -6,7 dihydro-5,8 –dioxo-1,2 diazo –cyclo dodecu 2,11-diene ,4-one ] and its complexes with (Co(II), Ni(II), Cu (II), Zn(II) and Cd(II)) were synthesis.This ligand was prepared in three steps, in the first step a solution of salicyladehyed in methanol reacted under refluxed with hydrazine monohydrate to give an (intermediate compound 1) which reacted in the second step with sodium pyruvate to give an (intermediate compound 2) which gave the ligand [L] in the three step when it reacted with 1,2- dichloro ethane.The complexes were synthesized by direct reaction of the corresponding metal chloride with the ligand. The ligand and complexes were characterized by spectroscopic methods [IR, UV-
... Show MoreA new mixed ligand complexes were prepared by reaction of quinoline -2-carboxylic acid (L1) and 4,4?dimethyl-2,2?-bipyridyl (L2) with V(IV),Cr(III), Rh(III), Cd(II) and Pt(IV) ions. These complexes were isolated and characterized by (FT-IR) and (UV-Vis) spectroscopy, elemental analysis, flame atomic absorption technique, thermogravimetric analysis, in addition to magnetic susceptibility and conductivity measurements. Most complexes were mononuclear and with octahedral geometry, except Cd (II) with tetrahedral geometry, and V (IV) with square pyramidal geometry. A theoretical treatment of the ligands and the prepared complexes in gas phase was done using two programs Hyperchem.8 and Gaussian program (GaussView Currently Available Versions (
... Show MoreThe probability is considered one of the grammatical cases in all languages of the world. Expressions of probability in Spanish language are expressed by various structures, expressions and some verb tenses. By this study explains the grammatical cases, the verbal periphrases, the impersonal expressions, the future tenses (simple and perfect) and the conditional mode of probability in Spanish language .We have explains these cases in detail with examples that have extracted from various spanish grammar books .The specific objective of this study is to know the resources and constructions of probability in Spanish language and their translation in Arabic language.
Compound 4-(((6-amino-7H-[1, 2, 4] triazolo [3, 4-b][1, 3, 4] thiadiazin-3-yl) methoxy) methyl)-2, 6-dimethoxyphenol (6) was synthesized by multi steps. The corresponding acetonitrile thioalkyl (7) was cyclized by refluxing with acetic acid to afford 4-(((6-amino-7H-[1, 2, 4] triazolo [3, 4-b][1, 3, 4] thiadiazin-3-yl) methoxy) methyl)-2, 6-dimethoxyphenol (8). Two new series of 4-(((6-(3-(4-aryl) thioureido)-7H-[1, 2, 4] triazolo [3, 4-b][1, 3, 4] thiadiazin-3-yl) methoxy) methyl)-2, 6-dimethoxyphenol (9a-c) and of 4-(((6-(substitutedbenzamido) 7H-[1, 2, 4] triazolo [3, 4-b][1, 3, 4] thiadiazin-3-yl) methoxy) methyl)-2, 6-dimethoxyphenol (10a-c) were synthesized as new derivatives for fused 1, 2, 4-trizaole-thiadiazine (8). The antioxidant
... Show MoreCompound 4-(((6-amino-7H-[1,2,4]triazolo[3,4-b][1,3,4]thiadiazin-3-yl)methoxy)methyl)- 2,6-dimethoxyphenol (6) was synthesized by multi steps. The corresponding acetonitrile thioalkyl (7) was cyclized by refluxing with acetic acid to afford 4-(((6-amino-7H-[1,2,4]triazolo[3,4- b][1,3,4]thiadiazin-3-yl)methoxy)methyl)-2,6-dimethoxyphenol (8). Two new series of 4-(((6-(3- (4-aryl)thioureido)-7H-[1,2,4]triazolo[3,4-b][1,3,4] thiadiazin-3-yl)methoxy)methyl)-2,6- dimethoxyphenol (9a-c) and of 4-(((6-(substitutedbenzamido)7H-[1,2,4]triazolo[3,4- b][1,3,4]thiadiazin-3-yl)methoxy)methyl)-2,6-dimethoxyphenol (10a-c) were synthesized as new derivatives for fused 1,2,4-trizaole-thiadiazine(8). The antioxidants of newly compounds were evaluated by DPPH
... Show More