There are two (non-equivalent) generalizations of Von Neuman regular rings to modules; one in the sense of Zelmanowize which is elementwise generalization, and the other in the sense of Fieldhowse. In this work, we introduced and studied the approximately regular modules, as well as many properties and characterizations are considered, also we study the relation between them by using approximately pointwise-projective modules.
Our aim in this work is to investigate prime submodules and prove some properties of them. We study the relations between prime submodules of a given module and the extension of prime submodules. The relations between prime submodules of two given modules and the prime submodules in the direct product of their quotient module are studied and investigated.
The concept of strong soft pre-open set was initiated by Biswas and Parsanann.We utilize this notion to study several characterizations and properties of this set. We investigate the relationships between this set and other types of soft open sets. Moreover, the properties of the strong soft pre-interior and closure are discussed. Furthermore, we define a new concept by using strong soft pre-closed that we denote as locally strong soft pre-closed, in which several results are obtained. We establish a new type of soft pre-open set, namely soft pre-open. Also, we continue to study pre- soft open set and discuss the relationships among all these sets. Some counter examples are given to show some relations
... Show MoreA non-zero submodule N of M is called essential if N L for each non-zero submodule L of M. And a non-zero submodule K of M is called semi-essential if K P for each non-zero prime submodule P of M. In this paper we investigate a class of submodules that lies between essential submodules and semi-essential submodules, we call these class of submodules weak essential submodules.
In this paper we introduce the notions of bi-ideal with respect to an element r
denoted by (r-bi- ideal ) of a near ring , and the notion fuzzy bi- ideal with respect
to an element of a near ring and the relation between F-r-bi-ideal and r-bi-ideal of
the near ring, we studied the image and inverse image of r-bi- ideal under
epimomorphism ,the intersection of r-bi- ideals and the relation between this ideal
and the quasi ideal of a near ring, also we studied the notion intuitionistic fuzzy biideal
with respect to an element r of the near ring N, and give some theorem about
this ideal .
After Zadeh introduced the concept of z-number scientists in various fields have shown keen interest in applying this concept in various applications. In applications of z-numbers, to compare two z-numbers, a ranking procedure is essential. While a few ranking functions have been already proposed in the literature there is a need to evolve some more good ranking functions. In this paper, a novel ranking function for z-numbers is proposed- "the Momentum Ranking Function"(MRF). Also, game theoretic problems where the payoff matrix elements are z-numbers are considered and the application of the momentum ranking function in such problems is demonstrated.
The purpose of this paper is to consider fibrewise near versions of the more important separation axioms of ordinary topology namely fibrewise near T0 spaces, fibrewise near T1 spaces, fibrewise near R0 spaces, fibrewise near Hausdorff spaces, fibrewise near functionally Hausdorff spaces, fibrewise near regular spaces, fibrewise near completely regular spaces, fibrewise near normal spaces and fibrewise near functionally normal spaces. Also we give several results concerning it.
The aim of this paper is to look at fibrewise slightly issuances of the more important separation axioms of ordinary topology namely fibrewise said to be fibrewise slightly T0 spaces, fibrewise slightly T1spaces, fibrewise slightly R0 spaces, fibrewise slightly T2 spaces, fibrewise slightly functionally T2 spaces, fibrewise slightly regular spaces, fibrewise slightly completely regular spaces, fibrewise slightly normal spaces. In addition, we announce and confirm many proposals related to these concepts.
In this work, we present the notion of sp[γ,γ^(* ) ]-open set, sp[γ,γ^(* ) ]-closed, and sp[γ,γ^(* ) ]-closure such that several properties are obtained. By using this concept, we define a new type of spaces named sp[γ,γ^(* ) ]-compact space.
Abstract Throughout this paper R represents commutative ring with identity and M is a unitary left R-module, the purpose of this paper is to study a new concept, (up to our knowledge), named St-closed submodules. It is stronger than the concept of closed submodules, where a submodule N of an R-module M is called St-closed (briefly N ≤Stc M) in M, if it has no proper semi-essential extensions in M, i.e if there exists a submodule K of M such that N is a semi-essential submodule of K then N = K. An ideal I of R is called St-closed if I is an St-closed R-submodule. Various properties of St-closed submodules are considered.
In this paper we introduced many new concepts all of these concepts completely
depended on the concept of feebly open set. The main concepts which introduced in
this paper are minimal f-open and maximal f-open sets. Also new types of
topological spaces introduced which called Tf min and Tf max spaces. Besides,
we present a package of maps called: minimal f-continuous, maximal f-continuous,
f-irresolute minimal, f-irresolute maximal, minimal f-irresolute and maximal firresolute.
Additionally we investigated some fundamental properties of the concepts
which presented in this paper.